
ELSEVIER

Contents lists available at ScienceDirect

BBA - Molecular and Cell Biology of Lipids

journal homepage: www.elsevier.com/locate/bbalip

Regular paper

Impact of minor cannabinoids on key pharmacological targets of estrogen receptor-positive breast cancer

Cristina Ferreira Almeida, Georgina Correia-da-Silva*, Ana Paula Ribeiro, Natércia Teixeira, Cristina Amaral*

UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal

ARTICLE INFO

Keywords: Luminal A breast cancer Medicinal Cannabis Minor cannabinoids Anti-cancer effects Estrogen receptor Androgen receptor

ABSTRACT

Endocrine therapy for estrogen receptor-positive (ER⁺) breast cancer has significantly improved over the last decades. However, it presents some limitations that make the search for novel therapeutic options mandatory. Several studies have been conducted to understand the anti-tumor potential of cannabinoids in breast cancer. Yet, most of them are focused on the major phytocannabinoids Δ^0 -tetrahydrocannabinol (THC) and cannabidiol (CBD). However, *Cannabis* has other minor phytocannabinoids whose anti-cancer properties are still to be elucidated. Here, we investigated the mechanisms of action of four minor cannabinoids, cannabigerol (CBG), cannabidivarin (CBDV), cannabinol (CBN), and cannabichromene (CBC), in 2D and 3D ER⁺ breast cancer models. These cannabinoids dysregulate MCF-7aro cell cycle progression, induce apoptosis by different mechanisms, and inhibit the growth of MCF-7aro spheroids. CBG exerts its effects through a down-regulation of both ER and AR protein levels, while CBDV reduces aromatase protein levels. CBN and CBC simultaneously affect the three targets, ER, aromatase, and AR. In fact, CBN and CBC present an AR-dependent cell death, down-regulate aromatase levels, and act as ER negative regulators impairing cancer cell growth. CBN caused the most pronounced effects. Overall, this study highlights the anti-cancer properties and the therapeutic potential of these minor cannabinoids in ER⁺ breast cancer.

1. Introduction

As breast cancer incidence and mortality are rising, with female breast cancer occupying the first place as the deadliest cancer in woman worldwide [1], novel therapies are needed to fight this disease. Among the various breast cancer subtypes, estrogen receptor-positive (ER^+) breast cancer is the most frequently diagnosed, with its dependence on estrogen being the main target for the therapies applied in clinic [2–4]. In fact, endocrine therapy, comprising the aromatase inhibitors (AIs) anastrozole (Ana), letrozole (Let), and exemestane (Exe), as well as the anti-estrogens tamoxifen and fulvestrant, have been used for several years as first-line therapy for both pre- and post-menopausal women with early and advanced ER^+ breast cancers [2,5,6]. Due to some adverse effects, mainly the development of endocrine resistance [7,8],

treatment modifications were introduced on the first-line therapy setting. The most recent guidelines for ER^+ advanced breast cancer recommend, as standard first-line option, the combination of endocrine therapy with CDK4/6 inhibitors, such as abemaciclib, palbociclib, and ribociclib [9–12]. However, despite the improvements achieved with CDK4/6 inhibitors, around 10 % of the patients do not respond to treatment (*de novo* resistance) and others may develop acquired resistance, causing disease relapse [5,13–16], highlighting the need for novel therapeutic approaches for ER^+ breast cancer.

Among the diverse constituents present in *Cannabis*, the therapeutic interest behind phytocannabinoids has been growing and their application has been explored in different diseases [17–19]. Regarding cancer, cannabinoids are used for the relief of chemotherapy-associated side effects, but a growing number of studies have already attributed anti-

E-mail addresses: george@ff.up.pt (G. Correia-da-Silva), cristinamaralibd@gmail.com (C. Amaral).

Abbreviations: AIs, aromatase inhibitors; Ana, Anastrozole; CBC, cannabichromene; CBCA, cannabichromenic acid; CBD, cannabidiol; CBDA, cannabidiolic acid; CBDB, cannabidiol-C4; CBDM, cannabidiol monomethyl ether; CBDV, cannabidivarin; CBG, cannabigerol; CBGVA, cannabigerovarinic acid; CBN, cannabinol; CDX, Casodex/Bicalutamide; ER $^+$, estrogen receptor-positive; Exe, Exemestane; HER2 $^+$, human epidermal growth factor receptor 2 positive; Let, Letrozole; STS, staurosporine; T, testosterone; THC, Δ^9 -tetrahydrocannabinol; TNBC, triple-negative breast cancer.

^{*} Corresponding authors at: UCIBIO, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.

proliferative, pro-cell death, anti-invasive, and anti-angiogenic actions to these compounds [20-27]. Δ^9 -tetrahydrocannabinol (THC) and cannabidiol (CBD) are the best-known and the most studied phytocannabinoids, including in breast cancer where they have been essentially investigated on human epidermal growth factor receptor 2 positive (HER2⁺) and in triple-negative breast tumors (TNBC) [20,28,29]. Regarding ER⁺ breast cancer and the mechanisms of action of cannabinoids, several groups have made important contributions, mainly focused on CBD and THC, when used alone or in combination with standard therapies [30-40]. Our group revealed that CBD and THC exert promising anti-cancer effects on ER+ breast cancer cells, by modulating aromatase, $ER\alpha$, and $ER\beta$ [41]. Moreover, we showed that CBD, when applied as an adjuvant therapy with AIs, may improve the anti-cancer effects of Exe [42]. Nevertheless, around 140 cannabinoids were already identified in the Cannabis plant and the therapeutic potential of most of them is yet to be elucidated [17,19,43,44].

Regarding the minor phytocannabinoids, cannabigerol (CBG), which similarly to CBD lacks the ability to induce psychotropic effects, has been extensively studied for its therapeutic potential in different diseases, including cancer [19,45]. In fact, several works showed that CBG might be beneficial for the treatment of glioblastoma [46,47], pancreatic ductal adenocarcinoma, when combined with gemcitabine and paclitaxel [48], colon adenocarcinoma, alone [49] or in combination with curcumin and piperin [50], cholangiocarcinoma [51], as well as breast cancer, both ER⁺ and TNBC subtypes [30,52,53]. Cannabinol (CBN), originated from THC, is another minor phytocannabinoid that has been shown to reduce viability and impair migration of TNBC cells [53]. However, only few studies have been conducted to clarify its potential anti-tumor effects. Another minor cannabinoid with promising potential against breast cancer is cannabidiolic acid (CBDA), which already demonstrated ability to inhibit TNBC cells migration [54-56]. Cannabichromenic acid (CBCA), in turn, showed anti-proliferative effects in colorectal cancer [57]. Other minor cannabinoids, such as cannabichromene (CBC) and cannabidivarin (CBDV), have interesting anticonvulsant and anti-inflammatory properties, however, studies addressing their beneficial roles in cancer are still scarce [19]. Nevertheless, first evidence of their effects in some malignancies, including prostate cancer, colorectal cancer, and urothelial cell carcinoma, have already been revealed [58-60].

Recently, through a comprehensive *in silico* and *in vitro* study [61], our group showed that some minor phytocannabinoids namely, CBG, CBDV, CBN, CBDA, cannabidiol-C4 (CBDB), cannabidiol monomethyl ether (CBDM), CBCA, cannabigerovarinic acid (CBGVA), and CBC, modulate aromatase, ER and/or androgen receptor (AR), all important targets for the management of ER⁺ breast cancer. Taking this into account, in this study, we aim to evaluate the cytotoxicity of these minor phytocannabinoids, their biological effects on 2D and 3D ER⁺ breast cancer cell models, and their mechanisms of action and, thus contribute to expand knowledge about the anti-tumor potential of this class of compounds in this type of cancer.

2. Materials and methods

2.1. Cell culture

The possible cytotoxic effects of the nine minor phytocannabinoids, cannabigerol (CBG), cannabidivarin (CBDV), cannabinol (CBN), cannabidiol-C4 (CBDB), cannabidiolic acid (CBDA), cannabidiol monomethyl ether (CBDM), cannabichromenic acid (CBCA), cannabigerovarinic acid (CBGVA) and cannabichromene (CBC), were evaluated in two non-tumor cell lines: human foreskin fibroblast (HFF-1) and MCF-10A cells. The HFF-1 cell line (ATCC, Manassas, VA, USA) was originally obtained from a male's foreskin, while MCF-10A cells, (ATCC, Manassas, VA, USA) are normal human breast epithelial cells [62]. The effects of CBG, CBDV, CBN and CBC were also evaluated in two breast cancer cell lines: MCF-7aro and SK-BR-3 cells. MCF-7aro cell line, kindly

provided by Dr. Shiuan Chen (Beckman Research Institute, City of Hope, Duarte, CA, USA), is an ER⁺ breast cancer cell line that overexpresses aromatase and a well-accepted *in vitro* cell model to study ER⁺ breast cancer [63]. On the other hand, SK-BR-3 cells (ATCC, Manassas, VA, USA) are human ER⁻ breast cancer cells and, consequently, a good *in vitro* cell model to clarify the effects of those minor phytocannabinoids on ER

All the four cell lines were maintained at 37 °C and 5 % CO2 atmosphere. HFF-1 cells were cultured in a glucose-enriched DMEM medium without phenol-red (Gibco Invitrogen Co., Paisley, Scotland, UK) supplemented with 1 mM sodium pyruvate (Gibco Invitrogen Co., Paisley, Scotland, UK), 1 % penicillin-streptomycin-amphotericin B solution (PAN-Biotech, Aidenbach, Germany), 2 mM L-glutamine (PAN-Biotech, Aidenbach, Germany), and 10 % of heat-inactivated fetal bovine serum (FBS) (Gibco Invitrogen Co., Paisley, Scotland, UK). MCF-10A cells were maintained in a DMEM F/12 culture medium without phenol red (Gibco Invitrogen Co., Paisley, Scotland, UK) and supplemented with HuMEC supplement (Gibco Invitrogen Co., Paisley, Scotland, UK), 5 % heatinactivated horse serum (Gibco Invitrogen Co., Paisley, Scotland, UK), 1 % penicillin-streptomycin-amphotericin B solution, and 2 mmol/L Lglutamine. MCF-7aro and SK-BR-3 cells were kept in an Eagles' minimum essential medium (MEM) with phenol-red (Gibco Invitrogen Co., Paisley, Scotland, UK) supplemented with 10 % FBS, 1 mmol/L sodium pyruvate and 1 % penicillin-streptomycin-amphotericin B solution. Additionally, 100 µg/mL of geneticin (G418; Gibco Invitrogen Co., Paisley, Scotland, UK) were also added to MCF-7aro cells medium. Moreover, three days before the beginning of experiments, MCF-7aro cells were cultured in an estrogen-free MEM without phenol-red (Gibco Invitrogen Co., Paisley, Scotland, UK) supplemented with 5 % pre-treated charcoal heat-inactivated fetal bovine serum (CFBS), 1 mmol/L sodium pyruvate, 1 % penicillin-streptomycin-amphotericin B solution and 2 mmol/L L-glutamine (PAN-Biotech, Aidenbach, Germany) in order to surpass FBS hormones interference, as well as the estrogenic properties of phenol-red [64]. All the experiments on MCF-7aro cells were also carried out in the presence of 1 nM of testosterone (T; Sigma-Aldrich Co., Saint Louis, USA), used as aromatase substrate and proliferation induction agent, or 1 nM of 17β-estradiol (E₂; Sigma-Aldrich Co., Saint Louis, USA) the product of aromatization reaction [65,66].

The stock solutions of the nine minor cannabinoids, **CBG** and **CBDV** (Phytolab GmbH & Co KG, Vestenbergsgreuth, Germany), **CBN**, **CBDB**, **CBDA**, **CBC**, and **CBDM** (Cayman Chemical, Michigan, USA), **CBCA** and **CBGVA** (Biosynth Ltd., United Kingdom), as well as Exe, ICI 182780 (Fulvestrant; ICI), and Casodex (Bicalutamide; CDX; Sigma-Aldrich Co., Saint Louis, MI, USA) were prepared in 100 % DMSO (Sigma-Aldrich Co., Saint Louis, MI, USA) and stored at -20 °C. The stock solution of T and E₂ were prepared in absolute ethanol and stored at -20 °C. Before each experiment, the compounds were diluted in fresh culture medium with a final concentration of DMSO and ethanol no higher than 0.05 %. Additionally, all the controls used for each experiment contained the vehicles in these conditions.

2.2. Cell viability

The effects of the minor cannabinoids on HFF-1, MCF-10A, MCF-7aro, and SK-BR-3 cell viability were addressed using 3-(4,5-dimethylthiazol-2-yl)-2,5-difenyltetrazolium (MTT) and the lactate dehydrogenase (LDH) release methods. For that, cells were cultured in 96-well plates for 3 days at 2×10^4 cell/mL, and for 6 days at 1×10^4 cell/mL for MCF-10A, MCF-7aro, and SK-BR-3 cells or at 7.5×10^3 cells/mL for HFF-1 cells. Cells were treated with the different cannabinoids at different concentrations (1, 5, and 10 μ M) and MCF-7aro cells were additionally stimulated with 1 nM of T or E2, as previously reported [42,65]. MCF-7aro cells only treated with 1 nM of T or E2 were considered as control cells. For HFF-1, MCF-10A, and SK-BR-3 cell lines, cells treated only with culture medium were considered as control.

Control cells represent the maximum of cell viability (100 %).

After treatment with the cannabinoids, MTT (0.5 mg/mL; Sigma-Aldrich Co., Saint Louis, MO, USA) was added and the plates were then incubated at 37 $^{\circ}\text{C}$ and 5 % CO $_2$ for 2 h 30 min. Cell viability was quantified spectrophotometrically in a Biotek Sinergy HTX Multi-Mode Microplate Reader (Biotek Instruments, Winowski, VT, USA), while the LDH release assay was performed with 10 % of the cell culture medium and the CytoTox 96 nonradioactive cytotoxicity assay kit (Promega Corporation, Madison, WI, USA), according to the manufacturer's protocol. All the experiments were performed in triplicate in at least three independent experiments. The results are expressed as the relative percentage of the control cells (100 %), for MTT assay, and for the LDH assay the control was set as 1.

2.3. Cell cycle analysis

In order to evaluate the anti-proliferative effects of CBG, CBDV, CBN, and CBC in MCF-7aro cells, DNA content was assessed through flow cytometry, as previously described [67]. Briefly, MCF-7aro cells were cultured in 6 well-plates at 7×10^5 cells/mL for 3 days in a medium containing 1 nM of T. Cells only treated with T were considered as control. After the 3 days of treatment, cells were fixed in 70 % cold ethanol and stained with a DNA staining solution containing 5 µg/mL Propidium Iodide (PI), 0.1 % Triton X-100, and 200 µg/mL DNase-free RNase A (Sigma-Aldrich Co., Saint Louis, MI, USA). The DNA content was assessed using the BD AccuriTM C6 cytometer through the acquisition of 40 000 events and the results were analyzed using a BD AccuriTM C6 software® (San Jose, CA, USA). The anti-proliferative effects of the four phytocannabinoids are presented as percentage of cells in the G₀/ G₁, S and G₂/M phases, in relation to the T-treated control cells. All the assays were performed in triplicate, in at least three independent experiments.

2.4. Apoptotic cell death analysis

Apoptotic cell death was evaluated through the analysis of caspase-7 activity, as previously reported [68,69]. Briefly, MCF-7aro cells cultured on a 96-well white plate at 2×10^4 cells/mL were incubated with the cannabinoids (10 μ M) in the presence of 1 nM of T with or without CDX (1 μ M) for 24 h (CBG, CBDV) or 8 h (CBN, CBC). After that, the experiment was performed using a luminescent assay kit with Caspase-Glo® 3/7, according to manufacturer's instructions (Promega Corporation, Madison, WI, USA). Cells treated with staurosporine at 10 μ M (STS, Sigma-Aldrich Co., Saint Louis, MO, USA) for 3 h before the incubation end time were used as a positive control.

Luminescence was measured using a Biotek Synergy HTX Multi-Mode Microplate Reader (Biotek Instruments, Winowski, VT, USA) and the results are expressed relative to untreated control cells with data presented as relative luminescence units (RLU). All the assays were performed in triplicate in at least three independent experiments.

2.5. Western blot analysis

Western blot analysis was performed in MCF-7aro cells. Cells were cultured in 6-well plates (1 \times 10^6 cells/mL or 7.5 \times 10^5 cells/mL) and exposed to CBG, CBDV, CBN, and CBC (10 μ M) in the presence of 1 nM of T, for either 8, 24 or 72 h. Cells treated only with T (1 nM) were considered as negative control, while cells treated with Exe (10 μ M), ICI (100 nM), CDX (1 μ M), or STS (10 μ M) were considered as positive controls. After treatment, cells were collected as previously described by our group [65]. 50 μ g/protein per sample were subjected to electrophoresis in 10 % SDS-PAGE and transferred to nitrocellulose membranes. Immunodetection was accomplished by using rabbit anti-PARP antibody (1:200; Cell Signaling Technology Inc., Boston, MA, USA), or mouse antibodies against aromatase (1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA), ER α (1:200; Santa Cruz Biotechnology, Santa

Cruz, CA, USA), and AR (1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA). As secondary antibodies, goat anti-mouse (1:2000) and goat anti-rabbit (1:2000) antibodies (Thermo Fisher, Waltham, MA, USA) were used. A mouse monoclonal anti- β -actin antibody (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used to control loading variations. The membranes were further exposed to a chemiluminescent substrate WesternBrightTM ECL (Advansta Inc., Menlo Park, CA, USA) and the immunoreactive bands were visualized with a ChemiDocTM Touch Imaging System (BioRad Laboratories, Melville, NY, USA). At least three independent experiments were performed for each protein. The protein expression obtained for treated cells was standardized in relation to protein expression of control cells.

2.6. RNA extraction and qPCR analysis

To perform RNA extraction and consequent qPCR analysis, MCF-7aro cells were seeded in 6-well plates at 1×10^6 cells/mL or 7.5×10^5 cells/ mL and treated with CBG, CBDV, CBN, and CBC (10 µM) in the presence of 1 nM of T, for 8 h or 3 days. Cells treated only with T (1 nM) were considered as negative control, while cells treated with Exe (10 µM) or ICI (100 nM) were considered as positive controls. After treatment, cells were lysed followed by RNA extraction, as previously reported [42]. Total RNA was quantified using the NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA). GRiSP Xpert cDNA Synthesis Mastermix (GRiSP Research Solutions, Porto, Portugal) was employed to obtain cDNA, which was further amplified using GRiSP Xpert Fast SYBR (GRiSP Research Solutions, Porto, Portugal), in the MiniOpticon Real-Time PCR Detection System (Bio-Rad Laboratories, CA, USA), as previously described [70]. The sequences of the primers, as well as the respective annealing temperatures are listed in Table 1. β-Actin was the housekeeping gene used and the fold change in gene expression was calculated using the $2^{-\Delta\Delta Ct}$ method [71]. At least three independent experiments were performed for each gene. The mRNA transcript levels of treated cells were normalized in relation to the mRNA transcript levels of control.

2.7. Spheroids culture and imaging

ER $^+$ breast cancer spheroids were constructed using MCF-7aro cells. Cells were plated at a cellular density of 2×10^4 cells/mL in 96 U-bottom non-adherent well plates and 24 h later were exposed to the compounds under study, CBG, CBDV, CBN, and CBC at 10 μM , for 14 days, in the presence of 1 nM of T. Every three days, half of the total well volume (100 μL) was replaced with fresh medium and compounds. Spheroids only exposed to 1 nM of T were considered as control. Generation of spheroids was monitored until day 14. Moreover, the progress of the

Table 1Primer sequences and annealing temperatures for housekeeping and target genes.

Symbol	Primers	Annealing Temperature
AR	Forward: 5'-TGTCCATCTTGTCGTCTTCG-3'	55 °C
	Reverse: 5'-ATGGCTTCCAGGACATTCAG-3'	
AREG	Forward: 5'-TGTCGCTCTTGATACTCGGC-3'	56 °C
	Reverse: 5'-ATGGTTCACGCTTCCCAGAG-3'	
CYP19A1	Forward: 5'-GATGATGTAATCGATGGCTAC-3'	58 °C
	Reverse: 5'-TTCATCATCACCATGGCGAT-3'	
EGR3	Forward: 5'-GACTCCCCTTCCAACTGGTG-3'	56 °C
	Reverse: 5'- GGATACATGGCCTCCACGTC-3'	
ESR1	Forward: 5'-CCTGATCATGGAGGGTCAAA-3'	55 °C
	Reverse: 5'-TGGGCTTACTGACCAACCTG-3'	
TFF1	Forward: 5'-GTGGTTTTCCTGGTGTCACG-3'	55 °C
	Reverse: 5'-AGGATAGAAGCACCAGGGGA-3'	
β -Actin	Forward: 5'-TGCCATCCTAAAAGCCACCC-3'	55 °C
	Reverse: 5'-	
	AGACCAAAAGCCTTCATACATCTC-3'	

spheroids over the 14 days was registered by capturing phase contrast pictures at days 0, 3, 7, 11, and 14. These time frames were selected to show the different phases of spheroids development.

Spheroids were measured using ImageJ software (National Institutes of Health, Maryland, USA). The program automatically determines the area and the perimeter. The values were then converted to diameter values and the absolute values of each experiment were used to describe the growth of the spheroids over the 14 days of treatment with CBG, CBDV, CBN, and CBC. The experiments were performed in triplicate and at least three independent experiments were conducted.

2.8. Spheroids viability

The resazurin reduction assay was used to evaluate spheroids viability. After the 14 days of treatment, spheroids were mechanically dissociated so that resazurin from Presto BlueTM cell viability reagent (Gibco Invitrogen Co., Paisley, Scotland, UK) is metabolized by the cells that form the spheroids. An amount of Presto BlueTM corresponding to 10 % of the total well volume was added to each well and the plate was then incubated at 37 °C and 5 % CO₂ for 2 h 30 min. Fluorescence was then measured with an excitation wavelength of 530 nm and emission 590 nm using a Biotek Synergy HTX Multi-Mode Microplate Reader (Biotek Instruments, Winowski, VT, USA) and the results are expressed as relative fluorescence units (RFU). The percentage of spheroids viability after treatment with the cannabinoids was further quantified by normalizing RFU values in relation to T-treated control spheroids (100 % spheroids viability). All the assays were performed in triplicate in at least three independent experiments.

2.9. Statistical analysis

GraphPad Prism 8® software (GraphPad Software, Inc., San Diego, CA, USA) was used for statistical analysis. Analysis of variance (ANOVA), followed by Bonferroni tests for multiple comparisons (two-way ANOVA and one-way ANOVA, respectively), were applied for the analysis of the different experiments. Values of p < 0.05 were considered statistically significant. All the data are expressed as the mean \pm standard error of the mean (SEM).

3. Results

3.1. Effects of minor cannabinoids on the viability of non-tumor and tumor cells

The effects of the nine phytocannabinoids, **CBG**, **CBDV**, **CBN**, **CBDB**, **CBDM**, **CBCA**, **CBGVA**, and **CBC** (1, 5 and 10 μ M), in two human non-tumor cell lines, HFF-1 and MCF-10A (Fig. 1), were assessed by the MTT assay after 6 days of treatment. The results showed that **CBCA**, at 5 and 10 μ M, reduced both HFF-1 (p < 0.01; p < 0.001) and MCF-10A (p < 0.05) cell viability (Fig. 1G), when compared to control cells. For the same concentrations, **CBDB** (p < 0.001; Fig. 1D), **CBDM** (p < 0.001; Fig. 1F) and **CBGVA** (p < 0.01; p < 0.001; Fig. 1H) only reduced HFF-1 cell viability, while **CBDA** (p < 0.05; p < 0.01; Fig. 1E) only decreased MCF-10A cell viability. On the other hand, **CBG** (Fig. 1A), **CBDV** (Fig. 1B), **CBN** (Fig. 1C), and **CBC** (Fig. 1I) did not reduce the viability of any of these cell lines. Considering these results, **CBDB**, **CBDA**, **CBDM**, **CBCA**, and **CBGVA** were considered cytotoxic and were not included in the subsequent studies on ER⁺ breast cancer cells.

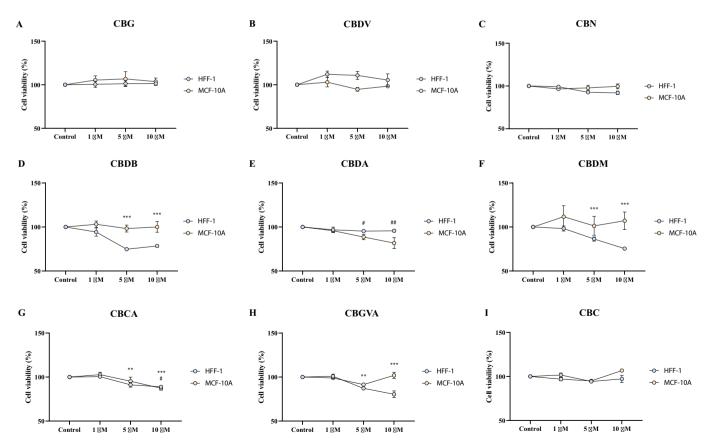


Fig. 1. Effects of the nine minor phytocannabinoids in HFF-1 and MCF-10A cells. Both cell lines were exposed to 1, 5, and 10 μ M of CBG (A), CBDV (B), CBN (C), CBDB (D), CBDA (E), CBDM (F), CBCA (G), CBGVA (H), and CBC (I) for 6 days. Cells treated only with medium were considered as control, representing 100 % of cell viability. The results are presented as mean \pm SEM of at least 3 independent experiments performed in triplicate. For HFF-1 cells, statistically significant differences between cannabinoid-treated cells and control cells are expressed as ** (p < 0.01) and *** (p < 0.001), while for MCF-10A cells those differences are represented as # (p < 0.05) and ## (p < 0.01).

The effects of **CBG**, **CBDV**, **CBN**, and **CBC** (1, 5, and 10 μ M) on MCF-7aro cell viability were then evaluated, by the MTT assay, after 3 and 6 days of treatment, and through the measurement of LDH release, after 3 days of treatment. Our results showed that **CBG** (Fig. 2A) and **CBDV** (Fig. 2C) were only able to significantly (p < 0.01; p < 0.001) reduce MCF-7aro cell viability after 6 days of exposure at 10 μ M, whereas **CBC** at 10 μ M (Fig. 2G) decreased cell viability at both incubation times. **CBN** (Fig. 2E) significantly (p < 0.001) decreased MCF-7aro cell viability in a dose- and time-dependent manner. Additionally, none of the four minor phytocannabinoids induced the release of LDH (Fig. 2), indicating that they do not cause loss of cell membrane integrity.

3.2. Anti-proliferative and pro-apoptotic effects of minor cannabinoids in ${\it ER}^+$ breast cancer cells

To understand whether the reduction on cell viability induced by CBG, CBDV, CBN, and CBC was associated with a dysregulation of cell cycle progression, the DNA content was assessed in MCF-7aro cells

exposed to 10 μ M of each cannabinoid for 3 days. As shown in Table 2, when compared to control, the four minor phytocannabinoids caused a

Table 2

Effects of **CBG**, **CBDV**, **CBN**, and **CBC** on MCF-7aro cell cycle progression. MCF-7aro cells were stimulate with T (1 nM) and treated with **CBG**, **CBDV**, **CBN**, and **CBC** (10 μ M), for 3 days. Cells treated only with T (1 nM) were considered as control. Values are represented as a percentage of single cell events in each stage of the cell cycle and are the mean \pm SEM of at least three independent experiments performed in triplicate. Statistically significant differences between cannabinoid-treated cells and control cells are expressed as *** (p < 0.001).

	G0/G1	S	G2/M
Testosterone	73.47 ± 0.46	12.45 ± 0.26	13.74 ± 0.41
CBG 10 µM	72.13 ± 1.43	4.93 ± 0.42 ***	21.51 ± 1.49 ***
CBDV 10 µM	74.09 ± 0.75	5.98 \pm 0.26 ***	18.80 \pm 0.75 ***
CBN 10 μM	71.73 ± 1.24	5.23 \pm 0.28 ***	$25.76 \pm 0.76 \ ***$
CBC 10 μM	71.51 ± 0.74	5.24 ± 0.16 ***	$23.03\pm0.71~^{***}$

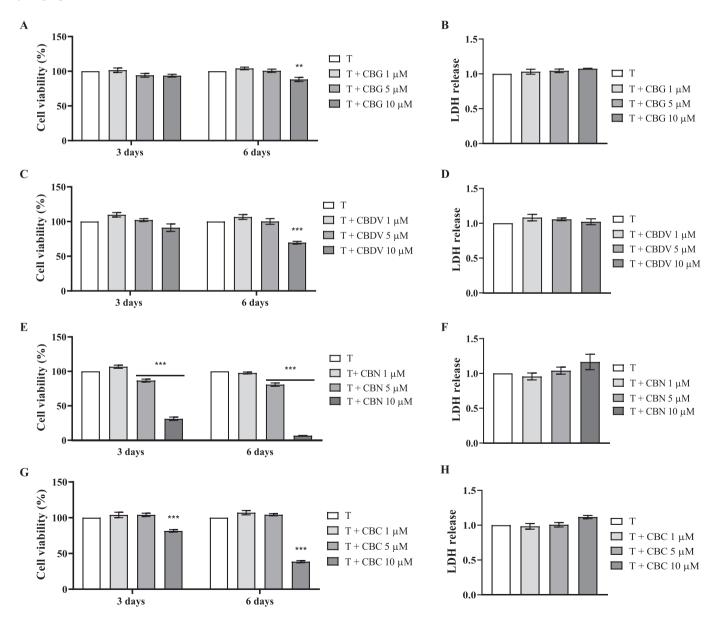


Fig. 2. Effects of CBG, CBDV, CBN, and CBC on MCF-7aro cell viability. Cells were stimulated with T (1 nM) and exposed to 1, 5, and 10 μ M of CBG (A, B), CBDV (C, D), CBN (E, F), and CBC (G, H) for 3 and 6 days. Cells treated only with T were considered as control, representing 100 % of cell viability. LDH assay was also performed in the same conditions after 3 days of treatment (B, D, F, H). The results are presented as mean \pm SEM of at least 3 independent experiments performed in triplicate. Statistically significant differences between cannabinoid-treated cells and control cells are expressed as ** (p < 0.01) and *** (p < 0.001).

significant (p < 0.001) cell cycle arrest in G_2/M phase alongside with a significant reduction (p < 0.001) of S population. Moreover, the involvement of apoptotic cell death was also addressed by measuring the activity of caspase-7, an effector caspase, and the expression levels of cleaved PARP (c-PARP), another hallmark of apoptosis. For that, MCF-7aro cells stimulated with T (1 nM) were treated with CBG and CBDV, for 24 h, or CBN and CBC, for 8 h, at 10 μ M. It is important to note that the activity of caspase-3 was not evaluated since MCF-7aro cells do not express caspase-3 [72]. As presented in Fig. 3, all the cannabinoids significantly (p < 0.05, p < 0.001) increased the activity of caspase-7 (20–30 % in relation to control), as well as the protein levels of c-PARP, when compared to control. As expected, the positive control STS increased caspase-7 activity (p < 0.001) and the expression levels of c-PARP.

3.3. Involvement of aromatase in the effects induced by the minor cannabinoids in ER^+ breast cancer cells

Despite the promising results of our in silico studies, the further in vitro assessment of anti-aromatase activity, using human placental microsomes, revealed that the minor cannabinoids, CBG, CBDV, CBN, and CBC are considered weak aromatase inhibitors [61]. Nevertheless, having in mind that MCF-7aro is an aromatase-overexpressing cell line [63] and that the referred compounds significantly decreased MCF-7aro cell viability (Fig. 2), the potential involvement of aromatase in the aforementioned effects was explored by assessing the protein levels of aromatase and the mRNA transcript levels of the aromatase gene (CYP19A1) after 8 h of exposure to the four cannabinoids, as well as by evaluating, through MTT assay, the effects on MCF-7aro cell viability in cells stimulated with T or E2. Except for CBG, a significant decrease in aromatase protein levels was observed after treatment with CBDV (p < 0.001), **CBN** (p < 0.05), or **CBC** (p < 0.01; Fig. 4A), when compared to control. Additionally, and similarly to Exe (10 µM) that, as expected, also significantly decreased aromatase protein levels (p < 0.001; Fig. 4A) without affecting gene transcription, none of the four cannabinoids altered the transcript levels of CYP19A1gene (Fig. 4B). To better understand the involvement of aromatase in the cytotoxic effects observed in MCF-7aro cells, the effects of the four phytocannabinoids in cell viability in the presence of E2 were also explored (Fig. 4C-F). Results show that the cytotoxic effects induced by CBG (Fig. 4C), CBDV (Fig. 4D), and CBN (Fig. 4E) are aromatase-independent, while CBC causes a higher reduction in MCF-7aro cell viability in the presence of E_2 (Fig. 4F).

3.4. Involvement of ER α in the effects induced by the minor cannabinoids in ER $^+$ breast cancer cells

Our previous work suggested that CBDV displays agonistic activities on ER, while CBN and CBC are ER antagonists with inverse agonistic properties and CBG has no effect in this receptor [61]. Considering that ER⁺ breast cancer is the focus of this study, as well as the biological and pharmacological relevance of this receptor in this breast cancer subtype, we performed additional assays in an ER breast cancer cell line (SK-BR-3) to better clarify the mechanism of action of these compounds and the involvement of ER on those mechanisms. The results were compared to the ones in MCF-7aro cells stimulated with T (1 nM). Apart from the absence of effects on SK-BR-3 cell viability verified for all the cannabinoids, statistically significant differences between MCF-7aro and SK-BR-3 treated cells were observed for **CBN** (p < 0.05; p < 0.001; Fig. 5C) and **CBC** (p < 0.01; p < 0.001; Fig. 5D) at 5 and 10 μ M. Curiously, and contrary to CBN, CBC, at 5 µM, induced a higher reduction on SK-BR-3 cell viability than in MCF-7aro (Fig. 5D). Regarding CBG (Fig. 5A) and CBDV (Fig. 5B), no statistically significant differences between MCF-7aro and SK-BR-3 cells were identified. These results suggest that ERa might be involved in the reduction of MCF-7aro cell viability.

Additionally, the effects of cannabinoids on ER α protein and *ESR1* mRNA transcript levels were also investigated in MCF-7aro cells. Notably, **CBG**, **CBN**, and **CBC** significantly (p < 0.001; Fig. 5E) decreased ER α protein levels, while **CBDV** did not induce any alteration (Fig. 5E). However, only **CBN** caused a significant decrease (p < 0.001; Fig. 5F) on *ESR1* transcript levels, whereas **CBDV** induced a significant increase (p < 0.001; Fig. 5F). Furthermore, their effects on the transcript levels of three ER α -regulated genes, *AREG* (Fig. 5G), *EGR3* (Fig. 5H), and *TFF1* (Fig. 5I), were also explored. **CBN** and **CBC** significantly (p < 0.001) reduced the transcription of all three ER α -regulated genes, which suggests that they impair ER α signaling. On the other hand, **CBG** and **CBDV** significantly (p < 0.001) increased *EGR3* transcription, without affecting *AREG* and *TFF1* transcript levels. As expected, ICI (100 nM),

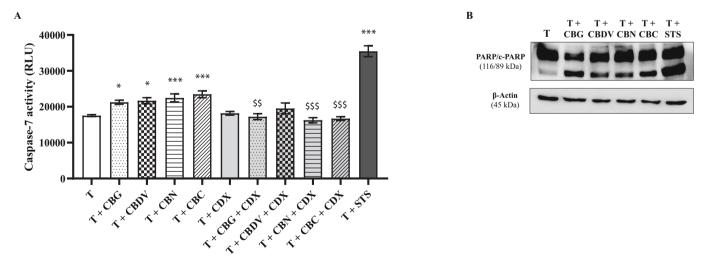
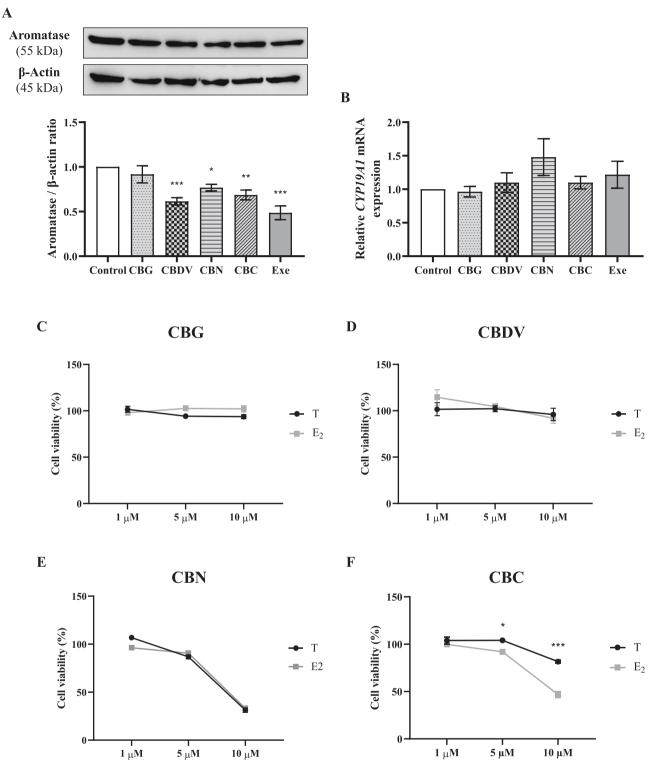
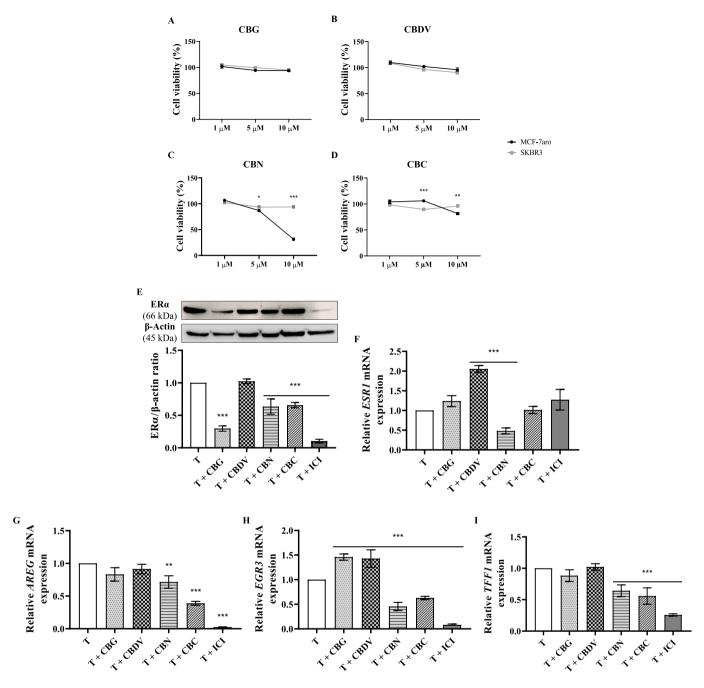
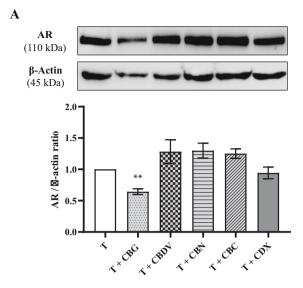



Fig. 3. Effects of CBG, CBDV, CBN, and CBC on apoptotic cell death. The impact of the four cannabinoids on apoptosis promotion was address through the analysis of caspase-7 activity (A) and c-PARP expression (B). In both cases, MCF-7aro cells were stimulated with T (1 nM) and treated with 10 μM of CBG or CBDV for 24 h, or 10 μM of CBN or CBC for 8 h. CBG, CBDV, CBN, and CBC in combination with CDX (1 μM) on caspase-7 activity were also investigated to evaluate the involvement of AR in the promotion of apoptosis. (B) A representative Western blot of PARP/c-PARP and β-actin, used as loading control, is presented. Cells treated only with T were used as control, while STS-treated cells (10 μM) were considered as positive control. The results are presented as mean ± SEM of at least 3 independent experiments performed in triplicate. Statistically significant differences between cannabinoid-treated cells and control cells are expressed as * (p < 0.05) and *** (p < 0.001), while the differences between cannabinoid-treated cells and cells treated with the cannabinoids in combination with CDX are expressed as \$\$ (p < 0.01) and \$\$\$ (p < 0.001).

Fig. 4. Effects of **CBG**, **CBDV**, **CBN**, and **CBC** on aromatase protein and transcript levels, and on MCF-7aro cell viability in the presence of testosterone (T) or 17β -estradiol (E₂). MCF-7aro cells were exposed to **CBG**, **CBDV**, **CBN**, and **CBC** (10 μM) for 8 h, to explore their effects on aromatase protein levels and transcript levels, and for 3 days in the presence E₂ or T to evaluate the effects in the presence of E₂. (**A**) A representative Western blot of aromatase and β-actin, as well as the densitometric analysis of aromatase expression levels after normalization with β-actin levels, used as loading control, are presented. (**B**) mRNA transcript levels for *CYP19A1* gene in relation to the housekeeping gene β-actin. Cells treated only with medium were considered as control, while cells treated with Exe (10 μM) were used as positive control. (**C**—**F**) Cells were stimulated with T (1 nM) or E₂ (1 nM) and exposed to 1, 5, and 10 μM of **CBG** (**C**), **CBDV** (**D**), **CBN** (**E**), and **CBC** (**F**) for 3 days. Cells treated only with T or E₂ were considered as control, representing 100 % of cell viability. The results are presented as mean ± SEM of at least 3 independent experiments performed in triplicate. Statistically significant differences between cannabinoid-treated cells and control cells, as well as between cells stimulated with T and E₂, are expressed as * (p < 0.05), ** (p < 0.05), ** (p < 0.01), and *** (p < 0.001).




Fig. 5. Effects of CBG, CBDV, CBN, and CBC on ERα. SK-BR-3 cells were treated with CBG (A), CBDV (B), CBN (C), and CBC (D) (1, 5, and 10 μ M) for 3 days and the results compared with the ones obtained in MCF-7aro cells. MC-7aro cells were stimulated with T (1 nM) and exposed to 10 μ M of CBG, CBDV, CBN, or CBC during 3 days for the determination of protein (E) and transcript levels (F—I). (E) A representative Western blot of ERα and β-actin, as well as the densitometric analysis of ERα expression after normalization with β-actin, used as loading control, are presented. (F—I) mRNA transcript levels for ESR1 (F), AREG (G), EGR3 (H), and TFF1 (I) genes in relation to the housekeeping gene β-actin. Cells treated only with medium or with T were used as control. The results are presented as mean ± SEM of at least 3 independent experiments performed in triplicate. Statistically significant differences between SK-BR-3 and MCF-7aro cells and the differences between cannabinoid-treated cells and T-treated control cells are expressed as * (p < 0.05), *** (p < 0.01), and **** (p < 0.001).

used as positive control, significantly reduced ER α protein levels (p < 0.001; Fig. 5E) and the transcription of ER α -targeted genes (p < 0.001; Fig. 5G-I).

3.5. Involvement of AR in the effects induced by the minor cannabinoids in ER^+ breast cancer cells

Recently, we also demonstrated, *in silico* and *in vitro*, that CBG, CBDV, CBN, and CBC act as AR antagonists with inverse agonistic properties [61]. To better understand the potential involvement of this

receptor on the mechanism of action of cannabinoids in ER $^+$ breast cancer cells, the effects of cannabinoids on AR protein and transcript levels were evaluated in MCF-7aro cells. Results presented in Fig. 6 show that **CBG** induced a significant decrease in AR protein levels (p < 0.01; Fig. 6A) and an increase in AR mRNA transcript levels (p < 0.05; Fig. 6B). The other cannabinoids did not cause any alteration on AR protein and transcript levels (Fig. 6). Although these results suggest no direct effect of cannabinoids on AR, with the exception of **CBG**, taking into account that they may act as AR antagonists with inverse agonistic properties [61] and considering that AR may have different biological

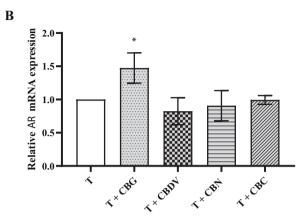
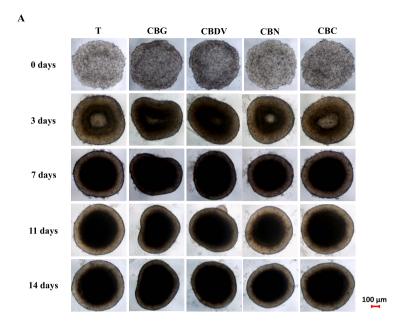


Fig. 6. Effects of CBG, CBDV, CBN, and CBC on AR. MCF-7aro cells were stimulated with T (1 nM) and exposed to 10 μM of CBG, CBDV, CBN, or CBC during 3 days for the determination of protein (A) and transcript levels (B). (A) A representative Western blot of AR and β -actin, as well as the densitometric analysis of AR expression after normalization with β -actin, used as loading control. (B) mRNA transcript levels for AR gene in relation to the housekeeping gene β -actin. Cells treated only with T were used as control, while cells treated with CDX (1 μM) were considered as positive control. The results are presented as mean \pm SEM of at least 3 independent experiments performed in triplicate. Statistically significant differences between cannabinoid-treated cells and T-treated control cells are expressed as * (p < 0.05) and ** (p < 0.01).

actions depending on hormonal status and AIs-treatment [66,70,71,73], the involvement of AR on apoptosis promotion was investigated. For that, it was evaluated the activity of caspase-7 in cannabinoids-treated cells in the presence of CDX, an AR antagonist. Under these conditions, all the cannabinoids, except CBDV, lost the ability to increase caspase-7 activity (Fig. 3A), suggesting that the induction of apoptosis by CBG, CBN, and CBC is AR-dependent.

3.6. Effects of the cannabinoids in a 3D spheroid breast cancer cell model


To better predict the therapeutic potential of these minor cannabinoids in ER⁺ breast tumors, ER⁺ breast cancer spheroids using MCF-7aro cells were generated. The spheroids were stimulated with T (1 nM) and treated with CBG, CBDV, CBN, or CBC (10 µM) for 14 days and the alterations in morphology and size were documented over time (0, 3, 7, 11 and 14 days). In Fig. 7A, it is possible to see that spheroids morphology did not change significantly over the 14 days of treatment, and that the spheroids resulting from cannabinoids treatment, mainly with CBG, CBDV, and CBN, were smaller than the T-treated control spheroids. This was corroborated by measuring the spheroids diameter. All the cannabinoids induced a significant (p < 0.01, p < 0.001) decrease in spheroids diameter, when compared to control, after 3, 7, and 11 days (Fig. 7B). CBN was the only cannabinoid capable of inducing a significant decrease (p < 0.01) in diameter after 14 days when compared to control (Fig. 7B). Furthermore, by using Presto Blue™ to access spheroids viability, it was demonstrated that all the cannabinoids significantly (p < 0.01; p < 0.001) reduced spheroids viability, in relation to control, after 14 days of treatment (Fig. 7C), with a reduction percentage of 28 %, 31 %, 24 %, and 26 % determined for CBG, CBDV, CBN, and CBC, respectively.

4. Discussion

The side effects induced by endocrine therapy, mainly endocrine resistance, are leading to a continuous change in the therapies used for targeting ER^+ breast tumors. Nowadays, the most recent guidelines suggest the combination of AIs or Fulvestrant with CDK4/6 inhibitors as the standard first-line therapeutic approach for advanced ER^+ breast cancer [8,9,74,75]. Nevertheless, this option is also associated with

some side effects, such as resistance [13–16,76,77], making mandatory the search for novel therapeutic solutions. As cannabinoids have been showing promising anti-cancer effects in different cancers [21–25], including breast cancer [20,28,29,41,42], in this study, the *in vitro* effects of some minor cannabinoids in 2D and 3D ER⁺ breast cancer models were evaluated.

Previous in silico and in vitro work from our group pointed to nine minor phytocannabinoids, namely CBG, CBDV, CBN, CBDB, CBDA, CBDM, CBCA, CBGVA, and CBC, as modulators of three of the most important therapeutic targets in ER⁺ breast cancer: aromatase, ER, and/ or AR [61]. In order to clarify their therapeutic potential in luminal A breast cancer cases, their cytotoxic behavior, anti-cancer properties, and mechanisms of action were analyzed. Our results demonstrated that 5 out of the 9 minor phytocannabinoids studied, namely CBDB, CBDA, CBDM, CBCA, and CBGVA, are cytotoxic in the non-tumor cell lines HFF-1 and MCF-10A, reason why they were not further studied in breast cancer cells. Corroborating a previous work [30], CBG, CBDV, CBN, and CBC are not cytotoxic for those non-tumor cells, reason why they were further assessed in MCF-7aro cells. In this ER⁺ breast cancer cell line, that mimics luminal A breast cancer, CBN and CBC were the most potent in inducing a significant reduction in cell viability, at both 3 and 6 days of treatment. In all cases, the reduction in cell viability can be explained by the promotion of apoptotic cell death, demonstrated by an increase in the activity of the effector caspase-7 and on c-PARP protein levels, but also by the cell cycle arrest at G2/M phase. It should be noted that, an increased number of cells at G₂/M phase has been associated with apoptosis promotion [78]. Furthermore, all the cannabinoids impaired the proliferation of breast cancer cells, since a significant reduction on the S phase was also observed. Therefore, altogether, these results suggest that these cannabinoids cause strong anti-proliferative effects in ER⁺ breast cancer cells that lead to the occurrence of apoptosis, by disrupting cell cycle progression at G2/M phase. Notably, previous studies have demonstrated that CBG induces caspase-dependent apoptotic cell death in glioblastoma, cholangiocarcinoma, and colon cancer cell models [46,47,49,51], as well as cell cycle arrest of HuCC-T1 cells, a cholangiocarcinoma cell model [51]. On the other hand, CBN has shown potential to induce apoptosis and to promote cell cycle arrest in HCC1806 breast cancer cells [79]. Indeed, it is widely known that apoptosis is one of the main processes by which cannabinoids, including

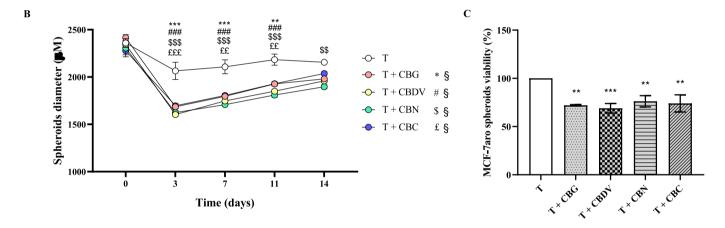


Fig. 7. Effects of CBG, CBDV, CBN, and CBC on MCF-7aro spheroids. MCF-7aro cells were used to build ER⁺ breast cancer spheroids that were then stimulated with T (1 nM) and treated with CBG, CBDV, CBN, and CBC (10 μ M) for 14 days. (A) Spheroids images over the 14 days of treatment. (B) Measurement of spheroids diameter throughout treatment. (C) Spheroids viability at the end of the 14 days of treatment. Spheroids treated only with T were used as control. The results are presented as mean \pm SEM of at least 3 independent experiments performed in triplicate. Statistically significant differences between the diameter of the T-treated control spheroids and cannabinoid-treated spheroids over the 14 days are expressed as ** (p < 0.01) and *** (p < 0.001), for CBG, as ### (p < 0.001), for CBDV, as \$\$ (p < 0.001) and \$\$\$ (p < 0.001), for CBN, and as ££ (p < 0.01) and £££ (p < 0.001) for CBC. Statistically significant differences between the viability of cannabinoid-treated spheroids and T-treated control spheroids are represented as ** (p < 0.001) and *** (p < 0.001).

THC and **CBD**, exert their anti-tumor actions [23,80–83]. In fact, our group has already demonstrated that both **CBD** and **THC**, as well as the endocannabinoid anandamide (**AEA**), induce apoptosis and disrupt cell cycle progression of MCF-7aro cells [41,42].

As mentioned before, due to its fundamental role in the last step of estrogens biosynthesis, aromatase is one of the main therapeutic targets in ER⁺ breast cancer. Recently, our group demonstrated that both CBD and THC, as well as AEA, target aromatase by decreasing its expression and inhibiting its activity [41,84,85]. Despite the weak anti-aromatase activity previously determined for CBG, CBDV, CBN, and CBC in human placental microsomes [61], our results in MCF-7aro cells demonstrate that, contrary to CBG, that did not affect aromatase levels, the other minor cannabinoids reduced aromatase protein levels without affecting the transcription of the aromatase gene (*CYP19A1*). These results are similar to the ones obtained for Exe and indicate that, besides the lack of ability to inhibit aromatase activity, CBDV, CBN, and CBC may induce the degradation of this enzyme, a mechanism already

suggested for Exe and other compounds [41,66,67,86–88], or prevent their transcription. By affecting aromatase levels, these minor cannabinoids may compromise estrogen synthesis and consequently the levels of estrogen in the tumors will decrease, impairing cancer growth and development [5,6]. However, considering the MTT assays, apparently the effects on aromatase do not affect the overall cytotoxicity induced by the phytocannabinoids.

Regarding ER, other key target in ER $^+$ breast cancer, previous studies from our group, in MCF-7aro cells, showed that the cannabinoids **CBD**, **THC**, and **AEA** reduce ER α protein levels [41] and that **CBD** acts as an ER α antagonist with inverse agonistic properties [42]. Recently, we collected evidence that **CBN** and **CBC** also act as ER antagonists with inverse agonistic properties, while **CBDV** exert agonistic activity and **CBG** does not affect the activity of this receptor [61]. In this study, we demonstrate that **CBN** decreases ER α expression and transcription, as well as the transcription of classic E2-induced genes *AREG*, *EGR3*, and *TFF1*. These results indicate that this cannabinoid down-regulates ER α ,

thus impairing ER α signaling, which corroborates its previously determined ER antagonistic activity [61]. Interestingly, CBC only reduces ER α protein levels and the transcription of ER α -targeted genes, a behavior similar to the SERD Fulvestrant and to the oral SERD AZD9496 [89], as well as to CBD [41,42]. This corroborates its antagonistic activity [61] that might be a result of a degradation or down-regulation of ER α , a behavior similar to Fulvestrant. Regarding CBDV, this cannabinoid induces an upregulation of *ESR1* gene, and also of *EGR3*, the *bona fide* target gene of ER α [90], which reinforces its role as an ER α agonist predicted in our previous study [61]. Surprisingly, CBG only decreased ER α protein levels without affecting *ESR1*, *AREG*, and *TFF1* transcript levels. However, a significant increase in *EGR3* transcription was spotted. This behavior resembles the one exhibited by Exe, which is linked to its weak estrogenic-like effect [66].

AR is another steroid receptor that has been receiving a lot of attention due to its promising role as a therapeutic target, as it has been shown that this receptor is expressed in 70-90 % of all ER⁺ breast carcinomas [70,91,92]. We previously showed that CBD acts as an AR antagonist with inverse agonistic properties [42] and, more recently, we demonstrated that CBG, CBDV, CBN, and CBC present the same behavior [61]. Our results indicated that only CBG was able to significantly reduce AR protein levels along with an increase in the transcription of AR gene. This increase in AR transcription might be an attempt to restore the levels of this receptor. On the other hand, considering that CBG is neither an ER agonist nor antagonist but an AR antagonist [61], we suggest that this cannabinoid, by reducing the levels of AR, may indirectly down-regulate ER levels, leading to an increased EGR3 transcription, as a compensatory mechanism. In fact, it has been described that in systems where AR is expressed along with ER, these receptors may control each other's function [42,66,70]. In contrast, neither CBDV, CBN nor CBC affect AR expression, a behavior already reported for CBD [41,42], as well as for THC and AEA [41].

As these cannabinoids may act on ER+ breast cancer cells trough an ER and/or AR-dependent mechanism, it was investigated the involvement of these receptors on the cell death induced by cannabinoids. As MCF-7aro cells present a high dependence on ER signaling for cell proliferation and survival, it is expected that ER inhibition leads to cell death. Therefore, as CBN and CBC impair ER signaling and CBG, CBN, and CBC down-regulate ERa expression levels, their cytotoxicity in breast cancer cells is ER-dependent. However, the role of AR in the promotion of cell death depends on the therapies applied [66,70,73,92]. Thus, the involvement of AR in the promotion of apoptotic cell death was explored and caspase-7 results after AR blockade demonstrated that, in such conditions, CBDV was the only minor cannabinoid retaining its ability to promote apoptosis. This suggests that apoptosis promoted by CBDV is not AR-dependent and may be the result of modulation of other signaling pathways involved in cell cycle progression. In contrast, for CBG, CBN, and CBC our results suggest that apoptosis is AR-dependent, as this cell death pathway is impaired after AR blockade. Curiously, the effects observed for CBG, CBN, and CBC are similar to the ones induced by the non-steroidal AIs Ana and Let in these cells [66].

Altogether, considering the effects in the three different targets, the minor phytocannabinoids may have distinct mechanisms of action in ER^+ breast cancer cells. Despite the reduced aromatase expression promoted by **CBDV**, **CBN**, and **CBC**, only **CBDV** appears to act as an $ER\alpha$ agonist, which from a clinical point of view is not beneficial. On the contrary, **CBN** and **CBC** act as $ER\alpha$ antagonists. In fact, **CBN** induces a down-regulation of $ER\alpha$ gene and protein and, consequently, a down-regulation of $ER\alpha$ -targeted genes, whereas **CBC**, contrary to **CBN**, does not affect ESR1 levels. Thus, we postulate that **CBC** may act as Fulvestrant, since its effects on $ER\alpha$ protein levels and $ER\alpha$ -targeted genes resemble the ones exhibited by this SERD and the oral SERD AZD9496 [89]. Finally, despite the down-regulation of $ER\alpha$ protein levels, **CBG** increases EGR3 transcription, presenting a weak estrogenic-like effect similar to the AI ERC [66], that might be a result of a compensation mechanism, due to its effect on AR protein levels, a behavior that might

not be beneficial. In addition, **CBG**, **CBN**, and **CBC** may act as AR antagonists to promote cell death. Despite the previous AR antagonistic activity determined for **CBDV** [61], this behavior may be tissue-specific and, apparently, our results suggest that its effects on breast cancer cells are AR-independent, a behavior similar to other cannabinoids [41].

Despite the wide use of 2D cell cultures to evaluate the anti-cancer potential of compounds, these systems fail to recapitulate the architecture and the structure of a solid tumor and most of the physiological aspects of in vivo tumor microenvironment, such as cell-cell interactions and access to oxygen and nutrients. As an attempt to surpass these issues, recently, 3D cell culture models have been developed and applied in several studies that aim to explore the anti-tumor effects of compounds. By having cells growing into clusters rather than monolayers, these models can better simulate the *in vivo* microenvironment [93–97], reason why they are being applied in drug discovery, replacing sometimes in vivo studies. Considering this, to better understand the possible therapeutic application of these four minor cannabinoids in ER⁺ breast cancer treatment, as well as to clarify their anti-tumor effects, ER+ breast cancer spheroids were developed, using MCF-7aro cells, and exposed to cannabinoids. Regardless the absence of significant morphological differences between control and cannabinoids-treated spheroids, all the cannabinoids decreased spheroids diameter and cell viability. The reduction on spheroids diameter was more pronounced for CBN, but regarding cell viability, the reduction was similar for all of them. In fact, even CBG and CBDV, that slightly reduced MCF-7aro cell viability after 6 days of treatment (11.8 % and 30.4 %, respectively), were able to significantly decrease both spheroids diameter and cell viability (27.9 % and 31.1 %, respectively), indicating that they may be also important anti-cancer agents. On the other hand, the results of CBN and CBC treated spheroids corroborate the MCF-7aro cell viability and cell proliferation results, although the reduction on spheroids cell viability in these cases (23.8 % and 26.0 %, respectively) was not as pronounced as the one verified on MCF-7aro 2D cell culture after 6 days of treatment (93.3 % and 61.5 %, respectively). Albeit that, these 3D cell culture results reinforce the potential clinical benefit of these minor cannabinoids in ER⁺ breast cancer, as well as the feasibility of 3D breast cancer models in predicting the anti-tumor activities of compounds.

Overall, taking into account the results both in the 2D and 3D breast cancer models, as well as the effects on the specific ER $^+$ breast cancer molecular targets, that corroborate previous data from our group [61], among the minor phytocannabinoids studied, **CBN** is the most promising. On the other hand, despite the induction of apoptosis and impaired cell proliferation, **CBDV** presents ER α agonistic activity and **CBG** a weak estrogenic-like effect that may limit their potential as anticancer drugs for this subtype of breast cancer. Nonetheless, it should be pointed that other targets and signaling pathways not explored in this work may also contribute to cannabinoids effects.

5. Conclusions

Here, we demonstrated that four minor phytocannabinoids, namely CBG, CBDV, CBN, and CBC exert relevant anti-cancer effects in 2D and 3D ER⁺ breast cancer models. The mechanism of action by which CBG may exert its anti-proliferative and cell death effects involves the downregulation of both ER and AR protein levels, while CBDV only reduces aromatase protein levels. Regarding CBN and CBC, their anticancer effects are the result of a simultaneous effect on the three targets, ER, aromatase, and AR. In fact, to impair breast cancer growth, these cannabinoids present an AR-dependent cell death, down-regulate aromatase protein levels, and act as ER negative regulators. Notably, although all the cannabinoids affected the growth of MCF-7aro spheroids, CBN caused the most pronounced effect.

Overall, by exploring the mechanisms of action of some less known phytocannabinoids in specific targets, this study expands the knowledge regarding the anti-cancer potential of cannabinoids and boosts the idea that these compounds might be applied not only in ER⁺ breast cancer

treatment, but also in other diseases relying on the same signaling pathways. It should be highlighted that to best of our knowledge, this is the first *in vitro* study that unveils the effects, mechanism of action, and targets of these minor cannabinoids in luminal A breast cancer cases.

CRediT authorship contribution statement

Cristina Ferreira Almeida: Writing – original draft, Validation, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Georgina Correia-da-Silva: Writing – original draft, Supervision, Resources, Funding acquisition, Conceptualization. Ana Paula Ribeiro: Methodology, Investigation. Natércia Teixeira: Writing – review & editing, Validation, Supervision, Resources, Funding acquisition, Conceptualization. Cristina Amaral: Writing – review & editing, Validation, Supervision, Resources, Project administration, Funding acquisition, Formal analysis, Conceptualization.

Funding

This research was funded by national funds from FCT—Fundação para a Ciência e a Tecnologia, in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences -UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy- i4HB.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors give thanks to Fundação para a Ciência e Tecnologia (FCT) for the Cristina Almeida grant (UI/BD/151314/2021) and Cristina Amaral contract, by REQUIMTE, under the funding program (DL 57/2016—Norma Transitória), and through the grant (SFRH/BPD/98304/2013). This work is also financed by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomyi4HB. We also thank Dr. Shiuan Chen (Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA) for kindly supplying MCF-7aro cells.

Data availability

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

References

- [1] F. Bray, et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 74 (3) (2024) 229–263.
- [2] A. Awan, K. Esfahani, Endocrine therapy for breast cancer in the primary care setting, Curr. Oncol. 25 (4) (2018) 285–291.
- [3] K. Muller, J.M. Jorns, G. Tozbikian, What's new in breast pathology 2022: WHO 5th edition and biomarker updates, J. Pathol. Transl. Med. 56 (3) (2022) 170–171.
- [4] K.S. Johnson, E.F. Conant, M.S. Soo, Molecular subtypes of breast Cancer: a review for breast radiologists, Journal of Breast Imaging 3 (1) (2021) 12–24.
- [5] C. Ferreira Almeida, et al., Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies, Biochem. Pharmacol. 223 (2024) 116178.
- [6] C. Ferreira Almeida, et al., Estrogen receptor-positive (ER(+)) breast cancer treatment: are multi-target compounds the next promising approach? Biochem. Pharmacol. 177 (2020) 113989.
- [7] T.V. Augusto, et al., Acquired resistance to aromatase inhibitors: where we stand!, Endocr. Relat. Cancer 25 (5) (2018) R283–R301.

- [8] O. Saatci, K.T. Huynh-Dam, O. Sahin, Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies, J. Mol. Med. (Berl) 99 (12) (2021) 1691–1710.
- [9] M. Roberto, et al., CDK4/6 inhibitor treatments in patients with hormone receptor positive, Her2 negative advanced breast Cancer: potential molecular mechanisms, clinical implications and future perspectives, Cancers (Basel) 13 (2) (2021).
- [10] F. Cardoso, et al., Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[†], Ann. Oncol. 30 (8) (2019) 1194–1220.
- [11] A. Gennari, et al., ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer, Ann. Oncol. 32 (12) (2021) 1475–1495.
- [12] F. Cardoso, et al., 6th and 7th international consensus guidelines for the management of advanced breast cancer (ABC guidelines 6 and 7), Breast 76 (2024) 103756.
- [13] A.C. Watt, S. Goel, Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer, Breast Cancer Res. 24 (1) (2022) 17.
- [14] D.H. Lee, et al., CDK4/6 inhibitors induce breast cancer senescence with enhanced anti-tumor immunogenic properties compared with DNA-damaging agents, Mol. Oncol. 18 (1) (2024) 216–232.
- [15] N. Portman, et al., Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer, Endocr. Relat. Cancer 26 (1) (2019) R15–R30.
- [16] M.C. Papadimitriou, et al., Resistance to CDK4/6 inhibition: mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer, Biochim. Biophys. Acta, Mol. Cell Res. 1869 (12) (2022) 119346.
- [17] P. Berman, et al., A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis, Sci. Rep. 8 (1) (2018) 14280.
- [18] L.E. Klumpers, D.L. Thacker, A brief background on Cannabis: from plant to medical indications, J. AOAC Int. 102 (2) (2019) 412–420.
- [19] P. Alves, C. Amaral, N. Teixeira, G. Correia-da-Silva, Cannabis sativa: much more beyond Δ9-tetrahydrocannabinol, Pharmacol. Res. 157 (2020) 104822.
- [20] C.F. Almeida, et al., Cannabinoids in breast Cancer: differential susceptibility according to subtype, Molecules (2021) 27(1).
- [21] C. Grimaldi, A. Capasso, The endocannabinoid system in the cancer therapy: an overview. Curr. Med. Chem. 18 (11) (2011) 1575–1583.
- [22] G. Velasco, C. Sánchez, M. Guzmán, Towards the use of cannabinoids as antitumour agents, Nat. Rev. Cancer 12 (6) (2012) 436–444.
- [23] G. Velasco, C. Sánchez, M. Guzmán, Anticancer mechanisms of cannabinoids, Curr. Oncol. 23 (2) (2016) S23–S32.
- [24] B. Hinz, R. Ramer, Anti-tumour actions of cannabinoids, Br. J. Pharmacol. 176 (10) (2019) 1384–1394.
- [25] A.I. Fraguas-Sánchez, C. Martín-Sabroso, A.I. Torres-Suárez, Insights into the effects of the endocannabinoid system in cancer: a review, Br. J. Pharmacol. 175 (13) (2018) 2566–2580.
- [26] M.M. Caffarel, et al., Cannabinoids: a new hope for breast cancer therapy? Cancer Treat. Rev. 38 (7) (2012) 911–918.
- [27] P. Sledzinski, et al., The current state and future perspectives of cannabinoids in cancer biology, Cancer Med. 7 (3) (2018) 765–775.
- [28] T. Kiskova, et al., Future aspects for cannabinoids in breast Cancer therapy, Int. J. Mol. Sci. 20 (7) (2019).
- [29] L. Dobovisek, et al., Cannabinoids and hormone receptor-positive breast Cancer treatment, Cancers (Basel) 12 (3) (2020).
- [30] R. Schoeman, N. Beukes, C. Frost, Cannabinoid combination induces cytoplasmic Vacuolation in MCF-7 breast Cancer cells, Molecules 25 (20) (2020).
- [31] D. Mokoena, B.P. George, H. Abrahamse, Cannabidiol combination enhances photodynamic therapy effects on MCF-7 breast Cancer cells, Cells 13 (2) (2024).
- [32] W. Suttithumsatid, W. Sukketsiri, P. Panichayupakaranant, Cannabinoids and standardized cannabis extracts inhibit migration, invasion, and induce apoptosis in MCF-7 cells through FAK/MAPK/Akt/NF-κB signaling, Toxicol. in Vitro 93 (2023) 105667.
- [33] R. Schoeman, et al., Cannabis with breast cancer treatment: propitious or pernicious? 3, Biotech 12 (2) (2022) 54.
- [34] M. Salbini, et al., Oxidative stress and multi-Organel damage induced by two novel Phytocannabinoids, CBDB and CBDP, in breast Cancer cells, Molecules 26 (18) (2021).
- [35] L. García-Morales, et al., CBD inhibits in vivo development of human breast Cancer tumors, Int. J. Mol. Sci. 24 (17) (2023).
- [36] H.A. Oliveira, R.K. Somvanshi, U. Kumar, Comparative changes in breast cancer cell proliferation and signalling following somatostatin and cannabidiol treatment, Biochem. Biophys. Res. Commun. 643 (2023) 30–38.
- [37] M.A. Alsherbiny, et al., Synergistic interactions of Cannabidiol with chemotherapeutic drugs in MCF7 cells: mode of interaction and proteomics analysis of mechanisms, Int. J. Mol. Sci. 22 (18) (2021).
- [38] S. Takeda, et al., Δ(9)-tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ), Chem. Res. Toxicol. 26 (7) (2013) 1073–1079.
- [39] S. Takeda, et al., Delta(9)-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling, Toxicology 245 (1–2) (2008) 141–146.
- [40] S. Takeda, I. Yamamoto, K. Watanabe, Modulation of Delta9tetrahydrocannabinol-induced MCF-7 breast cancer cell growth by cyclooxygenase and aromatase, Toxicology 259 (1–2) (2009) 25–32.
- [41] C. Amaral, et al., Unveiling the mechanism of action behind the anti-cancer properties of cannabinoids in ER(+) breast cancer cells: impact on aromatase and steroid receptors, J. Steroid Biochem. Mol. Biol. 210 (2021) 105876.

- [42] C.F. Almeida, et al., Cannabidiol as a promising adjuvant therapy for estrogen receptor-positive breast tumors: unveiling its benefits with aromatase inhibitors, Cancers (Basel) 15 (9) (2023).
- [43] R.G. Pertwee, Handbook of Cannabis, Handbooks in Psychopharmacology, 2016.
- [44] S. Procaccia, et al., Cannabis for medical use: versatile plant rather than a single drug, Front. Pharmacol. 13 (2022) 894960.
- [45] R. Nachnani, W.M. Raup-Konsavage, K.E. Vrana, The pharmacological case for Cannabigerol, J. Pharmacol. Exp. Ther. 376 (2) (2021) 204–212.
- [46] T.T. Lah, et al., The cytotoxic effects of Cannabidiol and Cannabigerol on glioblastoma stem cells may mostly involve GPR55 and TRPV1 Signalling, Cancers (Basel) 14 (23) (2022).
- [47] T.T. Lah, et al., Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma, Cells 10 (2) (2021).
- [48] L. Zeppa, et al., Cannabigerol induces Autophagic cell death by inhibiting EGFR-RAS pathways in human pancreatic ductal adenocarcinoma cell lines, Int. J. Mol. Sci. 25 (4) (2024).
- [49] F. Borrelli, et al., Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid, Carcinogenesis 35 (12) (2014) 2787–2797.
- [50] B. Yüksel, et al., Cannabinoid compounds in combination with curcumin and piperine display an anti-tumorigenic effect against colon cancer cells, Front. Pharmacol. 14 (2023) 1145666.
- [51] M.J. Viereckl, et al., Cannabidiol and Cannabigerol inhibit cholangiocarcinoma growth in vitro via divergent cell death pathways, Biomolecules 12 (6) (2022).
- [52] A. Ligresti, et al., Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma, J. Pharmacol. Exp. Ther. 318 (3) (2006) 1375–1387.
- [53] S.D. McAllister, et al., Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells, Mol. Cancer Ther. 6 (11) (2007) 2921–2927.
- [54] S. Takeda, et al., Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration, Toxicol. Lett. 214 (3) (2012) 314–319.
- [55] M. Hirao-Suzuki, et al., Cannabidiolic acid dampens the expression of cyclooxygenase-2 in MDA-MB-231 breast cancer cells: possible implication of the peroxisome proliferator-activated receptor β/δ abrogation, J. Toxicol. Sci. 45 (4) (2020) 227–236.
- [56] M. Suzuki, et al., Cannabidiolic acid-mediated interference with AP-1 transcriptional activity in MDA-MB-231 breast Cancer cells, Nat. Prod. Commun. 12 (5) (2017) 759–761.
- [57] R. Silva-Reis, et al., Antitumor effects of Cannabis sativa bioactive compounds on colorectal carcinogenesis. Biomolecules 13 (5) (2023).
- [58] O. Anis, et al., Cannabis-derived compounds Cannabichromene and Δ9-tetrahydrocannabinol interact and exhibit cytotoxic activity against urothelial cell carcinoma correlated with inhibition of cell migration and cytoskeleton organization, Molecules 26 (2) (2021).
- [59] G. Nahler, Treatment of malignant diseases with phytocannabinoids: promising observations in animal models and patients, Explor Med. 4 (2023) 847–877.
- [60] C. Pagano, et al., Molecular mechanism of cannabinoids in Cancer progression, Int. J. Mol. Sci. 22 (7) (2021).
- [61] C.P. Ferreira Almeida .A., et al., Molecular Targets of Minor Cannabinoids in Breast Cancer: In Silico and In Vitro Studies, Pharmaceuticals 17 (9) (2024).
- [62] Y. Qu, et al., Evaluation of MCF10A as a reliable model for Normal human mammary epithelial cells, PLoS One 10 (7) (2015) e0131285.
- [63] T. Itoh, et al., Letrozole-, anastrozole-, and tamoxifen-responsive genes in MCF-7aro cells: a microarray approach, Mol. Cancer Res. 3 (4) (2005) 203–218.
- [64] Y. Berthois, J.A. Katzenellenbogen, B.S. Katzenellenbogen, Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogenresponsive cells in culture, Proc. Natl. Acad. Sci. USA 83 (8) (1986) 2496–2500.
- [65] C. Amaral, et al., Apoptosis and autophagy in breast cancer cells following exemestane treatment, PLoS One 7 (8) (2012) e42398.
- [66] T.V. Augusto, et al., Differential biological effects of aromatase inhibitors: apoptosis, autophagy, senescence and modulation of the hormonal status in breast cancer cells, Mol. Cell. Endocrinol. 537 (2021) 111426.
- [67] C.F. Almeida, et al., Discovery of a multi-target compound for estrogen receptorpositive (ER(+)) breast cancer: involvement of aromatase and ERs, Biochimie 181 (2021) 65–76.
- [68] C. Amaral, et al., Steroidal aromatase inhibitors inhibit growth of hormone-dependent breast cancer cells by inducing cell cycle arrest and apoptosis, Apoptosis 18 (11) (2013) 1426–1436.
- [69] C. Amaral, et al., Anti-tumor efficacy of new 7alpha-substituted androstanes as aromatase inhibitors in hormone-sensitive and resistant breast cancer cells, J. Steroid Biochem. Mol. Biol. 171 (2017) 218–228.

- [70] C. Amaral, et al., The potential clinical benefit of targeting androgen receptor (AR) in estrogen-receptor positive breast cancer cells treated with Exemestane, Biochim. Biophys. Acta Mol. basis Dis. 1866 (5) (2020) 165661.
- [71] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method, Methods 25 (4) (2001) 402–408.
- [72] H. Kurokawa, et al., Alteration of caspase-3 (CPP32/Yama/apopain) in wild-type MCF-7, breast cancer cells, Oncol. Rep. 6 (1) (1999) 33–37.
- [73] L.F. Macedo, et al., Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole, Cancer Res. 66 (15) (2006) 7775–7782.
- [74] F. Cardoso, et al., 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5)(dagger), Ann. Oncol. 31 (12) (2020) 1623–1649.
- [75] E. Olson, Combination therapies in advanced, hormone receptor-positive breast Cancer, J. Adv. Pract. Oncol. 9 (1) (2018) 43–54.
- [76] G.T. Gallanis, et al., Stromal senescence following treatment with the CDK4/6 inhibitor Palbociclib alters the lung metastatic niche and increases metastasis of drug-resistant mammary Cancer cells, Cancers (Basel) 15 (6) (2023).
- [77] V. Wagner, J. Gil, Senescence as a therapeutically relevant response to CDK4/6 inhibitors, Oncogene 39 (29) (2020) 5165–5176.
- [78] R.S. DiPaola, To arrest or not to G(2)-M Cell-cycle arrest: Commentary re: A. K. Tyagi et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G(2)-M arrest, and apoptosis, Clin. cancer res. 8 (11) (2002) 3311–3314, 8: 3512-3519. Clin Cancer Res, 2002.
- [79] N. Zhong, et al., Cannabinol inhibits cell growth and triggers cell cycle arrest and apoptosis in cancer cells. Biocatalysis and agricultural, Biotechnology (2023) 48.
- [80] F. Hosami, et al., The strengths and limits of cannabinoids and their receptors in cancer: insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects, Biomed. Pharmacother. 144 (2021) 112279.
- [81] Z. Fu, et al., Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: a review, Front. Pharmacol. 14 (2023) 1094020.
- [82] L. Ma, et al., Research Progress on the mechanism of the antitumor effects of Cannabidiol, Molecules 29 (9) (2024).
- [83] M.D. Mashabela, A.P. Kappo, Anti-Cancer and anti-proliferative potential of Cannabidiol: a cellular and molecular perspective, Int. J. Mol. Sci. 25 (11) (2024).
- [84] M. Almada, et al., Cannabidiol (CBD) but not tetrahydrocannabinol (THC) dysregulate in vitro decidualization of human endometrial stromal cells by disruption of estrogen signaling, Reprod. Toxicol. 93 (2020) 75–82.
- [85] M. Almada, et al., Anandamide targets aromatase: a breakthrough on human decidualization, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864 (12) (2019) 158512.
- [86] X. Wang, S. Chen, Aromatase destabilizer: novel action of exemestane, a food and drug administration-approved aromatase inhibitor, Cancer Res. 66 (21) (2006) 10281–10286.
- [87] T.V. Augusto, et al., Effects of new C6-substituted steroidal aromatase inhibitors in hormone-sensitive breast cancer cells: cell death mechanisms and modulation of estrogen and androgen receptors, J. Steroid Biochem. Mol. Biol. 195 (2019) 105486.
- [88] C. Amaral, et al., Anti-tumor efficacy of new 7alpha-substituted androstanes as aromatase inhibitors in hormone-sensitive and resistant breast cancer cells, J. Steroid Biochem. Mol. Biol. 171 (2017) 218–228.
- [89] A. Nardone, et al., The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance, Br. J. Cancer 120 (3) (2019) 331–339.
- [90] A. Inoue, et al., Transcription factor EGR3 is involved in the estrogen-signaling pathway in breast cancer cells, J. Mol. Endocrinol. 32 (3) (2004) 649–661.
- [91] F.E. Vera-Badillo, et al., Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis, J. Natl. Cancer Inst. 106 (1) (2014) p. djt319.
- [92] C. Dai, L.W. Ellisen, Revisiting androgen receptor signaling in breast Cancer, Oncologist 28 (5) (2023) 383–391.
- [93] O.E. Atat, et al., 3D modeling in cancer studies, Hum. Cell 35 (1) (2022) 23–36.
- [94] H. Zhao, et al., Effect of cell culture models on the evaluation of anticancer activity and mechanism analysis of the potential bioactive compound, iturin a, produced by Bacillus subtilis, Food Funct. 10 (3) (2019) 1478–1489.
- [95] A. Cacciamali, R. Villa, S. Dotti, 3D cell cultures: evolution of an ancient tool for new applications, Front. Physiol. 13 (2022) 836480.
- [96] S. Breslin, L. O'Driscoll, The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance, Oncotarget 7 (29) (2016) 45745–45756.
- [97] C. Jensen, Y. Teng, Is it time to start transitioning from 2D to 3D cell culture? Front. Mol. Biosci. 7 (2020) 33.