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A B S T R A C T

The pharmacological research on the Cannabis sativa-derived compounds has never terminated. Among the
phytocannabinoids without psychotropic effects, the prevalent one in Cannabis is cannabidiol (CBD). Although
CBD was initially considered a type 2 cannabinoid receptor (CB2R) antagonist, it did not show a good canna-
binoidergic activity. Furthermore, heterogeneous results were obtained in experimental animal models of an-
xiety disorders, psychotic stages and neurodegenerative diseases. Recently, CBD has been authorized by the FDA
to treat some rare forms of epilepsy and many trials have begun for the treatment of autism spectrum disorders.

This review aims to clarify the pharmacological activity of CBD and its multiple therapeutic applications.
Furthermore, critical and conflicting results of the research on CBD are discussed with a focus on promising
future prospects.

1. Introduction

Humankind has associated the use of Cannabis sativa (C. sativa) to its
therapeutic virtues owing to the more than 100 phytocannabinoids
present [1]. However, modern medicine has yet to define the potential
therapeutic applications of cannabis phytoextracts. Indeed, licensed
clinical use of C. sativa phytochemicals remains limited to a small
number of diseases such as colitis, pain in multiple sclerosis, appetite
stimulation in AIDS and cancer chemotherapy [1]. These pathological
conditions benefit from the action of trans-Δ9-tetrahydrocannabinol
(D9-THC), which is also responsible for psychoactive side effects [1].
Indeed, the psychoactive responses of D9-THC include anxiety, para-
noia, perceptual alterations, and cognitive deficits; they are caused by
the perturbation of GABA/glutamatergic neurotransmission and dopa-
mine release [2]. Currently, this is the reason why, today, neurobiolo-
gical research on C. sativa is complex and difficult, and consequently, its
cultivation and use are illegal/banned in most of the countries [3].
Recently, preclinical and clinical trials on cannabidiol (CBD), a phyto-
cannabinoid devoid of psychoactive effects, have highlighted en-
couraging results. Indeed, CBD is the second most abundant phyto-
cannabinoid after D9-THC and it represents a potential

pharmacotherapy for treating symptoms of various neuropsychiatric
disorders such as addiction, anxiety and psychosis, disorders of moti-
lity, and epilepsy [4–11]. However, despite the therapeutic utility of
CBD, its specific pharmacological mechanism remains not entirely
clear. Indeed, CBD in addition to interacting with the endocannabinoid
system (ECS), it can also act on serotonin, adenosine, dopamine and
opioid receptors [12,13] behaving as a multi-target drug.

Here, the synthesis and metabolism of CBD in C. sativa will be in-
itially evaluated. Furthermore, the latest evidence on the interaction
between CBD and the ECS will be analyzed. Finally, a critical and
comprehensive evaluation of the CBD pharmacological mechanism in
several disorders will be presented.

2. Botanical origins and pharmacological activities of cannabidiol

C. sativa produces more than 100 phytocannabinoids chemically
well identified and characterized. Phytocannabinoids are biosynthe-
sized during specific extreme environmental conditions of humidity,
temperature, radiation, soil nutrients, and parasites and they are ac-
cumulated in the trichomes of C. sativa as cannabinoid acids [1]. The
plant uses phytocannabinoids as a defense against herbivores and
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parasites, indeed it does not have receptors for them [14]. Olivetolic
acid and divarinic acid are the two phytocannabinoid precursors that
generate cannabigerolic acid (CBGA). CBGA is the central precursor for
phytocannabinoids biosynthesis in C. sativa, from which tetra-
hydrocannabinolic acid (THCA), cannabichromenic acid (CBCA) and
cannabidiolic acid (CBDA) originate [1]. CBDA forms cannabidiol
(CBD), the most abundant non-psychotropic phytocannabinoid of C.
sativa [15]. CBD was originally purified in 1940 and its structure
characterized in 1960 [4] (Fig. 1). Since then, the phytoextracts have
been characterized and the therapeutic potential of C. sativa has begun
to be understood.

In order to understand the mechanism of action of CBD it is ne-
cessary to discuss how the endocannabinoid system (ECS) is organized.
The ECS is composed by endocannabinoids, their receptors and the
enzymes for their biosynthesis and degradation. N-arachidonoyletha-
nolamine (AEA), also called anandamide, and 2-arachidonoyl glycerol
(2-AG) are the most studied endocannabinoids, a family of fatty acid
derivatives. AEA and 2-AG are synthesized on demand from membrane
phospholipids and then rapidly released [16]. Several enzymes parti-
cipate in the production of these endocannabinoids. N-acylpho-
sphatidylethanolamine-selective phospholipase D (NAPE-PLD) is re-
sponsible for the hydrolysis of N-acylphosphatidylethanolamide
(NAPE) and the synthesis of AEA (Fig. 2). Whereas, phospholipase C
(PLC) and diacylglycerol lipase α (DAGLα) or β (DAGLβ) hydrolyse 2
arachidonic acid in 2-AG [17]. Furthermore, there are other important
enzymes that regulate the degradation of AEA and 2-AG, such as fatty

acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)
respectively that produce arachidonic acid and ethanolamine or gly-
cerol [17]. Endocannabinoids interact with two G protein-coupled re-
ceptors composed by seven transmembrane domains and the in-
tracellular C-terminal extremity and extracellular N-terminal extremity:
the type 1 cannabinoid receptor (CB1R) and the type 2 cannabinoid
receptor (CB2R). The CB1R is localized in the brain and in peripheral
tissues such as the intestine, liver, adipose tissue and immune cells [18].
Instead CB2R is distributed on spleen, tonsil, and immune cells and
recently they have been found in glial and neuronal cells [19]. In ad-
dition, AEA and 2-AG are involved in different (i.e., independent to the
CBR1 and CBR2) pathways interacting with non-cannabinoid receptors
including the transient receptor potential vanilloid 1 (TRPV1) channel,
transient receptor potential ankyrin 1 (TRPA1), the peroxisome pro-
liferator-activated receptor-gamma (PPARγ), nuclear receptor and the
orphan G protein-coupled receptor (GPR55) [18].

CBD has a very low affinity (in the micromolar range) for CB1R and
CB2R [20], and nevertheless CBD is able to bind to these receptors. In
addition, it antagonizes CB1R and CB2R synthetic agonist action such
as that of CP55940, in the nanomolar range; this concentration is lower
that the concentration necessary for CBD to interact with the canna-
binoid receptors, due to the action at different prejunctional sites
[21,22]. Moreover, recently CBD has been considered an allosteric
negative modulator of CB1R and CB2R, and it highlighted a pharma-
cological promiscuity towards many receptors. Indeed, CBD interacts
with numerous non-cannabinoid receptors associated with G proteins

Fig. 1. Extreme environmental conditions, such as parasites, light intensity, dryness of the soil and low humidity, favor the production of phytocannabinoids such as
cannabidiol (CBD). Cannabigerolic acid (CBGA) is the precursor of tetrahydrocannabinolic acid (THCA), cannabichromenic acid (CBCA), and cannabidiolic acid
(CBDA). The decarboxylation of CBDA leads to the formation of CBD, which acts on different receptor systems. CBD is not naturally present in the inflorescences and
conversion by decarboxylation occurs at 120 °C. CB1R, cannabinoid receptor 1; CB2R, cannabinoid receptor 2, TRPV1, vanilloid receptor 1; GPR55, G protein-
coupled receptor 55; GLYR, glycine receptor; A2AR, adenosine receptor type 2A, 5-HT1A, serotonine receptor type 1A, hepatic cytochromes.
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(GPCR) but it does not have a high affinity as observed for serotonin
receptor 5-HT1a [23]. In addition, high concentrations of CBD are able
to modulate allosterically glycine receptors activated by specific ligand
by influencing the role of glycine in post-synaptic transmission [24].
Furthermore, the protective effect of CBD is partially stopped in the
inflammatory early stages by administering adenosine A2a receptor
antagonists [25]. Also, in models of acute central nervous system (CNS)
injury, CBD decreases neuroinflammation through adenosine A2a re-
ceptor stimulation [25]. CBD has also immunity functions, by reducing
the leukocytes transmigration and down-regulating the expression of
the vascular cell adhesion molecule-1 (VCAM-1). Furthermore, a re-
duced activation of microglia and reduced expression of chemokine
ligand 2 (CCL2), chemokine ligand 5 (CCL5) and Interleukin 1 beta IL-
1β has been observed after CBD treatment in murine models [25].
Lastly, CBD shows a high affinity towards transient receptor potential
(TRP) channels, in particular towards TRPV1 and TRPV2 receptors
[26].

Finally, CBD is able to modulate different enzymes belonging to the
cytochrome P450 (CYP450) family, the main enzymatic system in-
volved in the metabolism of phase 1 of xenobiotics [27]. In particular,
CBD can inhibit CYP2C19 and may be involved in the therapeutic ef-
fects of some brain disorders, such as epilepsy, psychosis and neuro-
degeneration. CBD completely inhibits CYP29C and CYP2D6 and has a
strongly inhibitory action on the CYP1 family, in particular on CYP1A1,
CYP1A2 and CYP1B1. Finally, CBD inhibits members of the CYP3 fa-
mily such as CYP3A5, CYP3A4 and CYP3A7 [27].

3. Therapeutic actions of cannabidiol

While the preclinical and clinical aspects of D9-THC and its deri-
vatives have been studied extensively [28–34], on the CBD only re-
cently a lot of data has been collected. Here the effects of CBD in the
treatment of some psychiatric disorders will be discussed (Table 1).

3.1. Epilepsy

Epilepsy belongs to neurodevelopmental disorders with a predis-
position to generate epileptic seizures, and neurobiological, cognitive,
psychological and social alterations [35]. Recent clinical studies have
shown that CBD reduces seizure frequency in patients with refractory
epilepsies [36–38] although some limitations have been highlighted
[36,39,40]. Among these refractory epilepsies, the most studied are the
Dravet syndrome (DS) and Lennox-Gastaut syndrome (LS).

DS is a severe childhood disorder characterized by treatment-re-
fractory epilepsy, autism, severe cognitive deficits and frequent pre-
mature death [41]. DS is caused by heterozygous loss of function mu-
tations in the cerebral voltage-gated sodium channel (SCN1A) [42],
which selectively reduces sodium current and excitatory drive in many
types of GABAergic interneurons [43]. Scn1a+/− mice are a murine
model of DS. They manifest symptoms of human DS such as sponta-
neous and thermally induced seizures, and autism-like social deficits
[44]. It has been demonstrated that high doses of CBD (100mg/kg)
effectively reduce the frequency, duration and severity of seizures and
autism-like social deficits in DS mice, but low doses of CBD (10–20mg/
kg) enhance social behaviors [45]. These results have revealed the
difficulty to design a treatment for DS that is able to control both

Fig. 2. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are synthesized on demand from membrane phospholipids and released. N-acyl-
phosphatidylethanolamine-selective phospholipase D (NAPE-PLD), phospholipase A2 and phospholipase C enzymes synthesize AEA from N-acylpho-
sphatidylethanolamide (NAPE). Phospholipase C (PLC) and diacylglycerol lipase α (DAGLα) or β (DAGLβ) synthesize 2-AG by hydrolyzing 2-arachidonic acid
containing diacylglycerol (DAG). Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) are degradation enzymes of AEA and 2-AG respectively.
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seizures and improve social behaviors [45]. Allegedly, these effects are
dependent on different molecular mechanisms originated from various
doses of CBD. Indeed, CBD at high doses acts as an antagonist on lipid-
activated G protein-coupled receptor 55 (GPR55), modulating the
hippocampal synaptic plasticity [46]. Moreover, CBD (100mg/kg) re-
stores inhibitory interneuron excitability in the dentate gyrus of the
hippocampus and reduces excitatory output from neurons of dentate
gyrus by enhancing GABA-A receptor-mediated inhibition [47].

Regarding Lennox–Gastaut syndrome (LS), it is a severe develop-
mental epileptic encephalopathy that has multiple causes and an in-
cidence of approximately two cases per 100,000 population [48]. LS is
characterized by several seizure types, severe cognitive impairment and
abnormal electroencephalographic pattern of slow spike and complex
waves [48]. Seizures usually begin to occur before the age of 8 years
and persist into adulthood in more than 90% of patients. Drop seizures
due to an increase or loss of motor tone are characteristic of this dis-
order and often result in serious injury. A promising new drug for LS is
CBD, which has proved effective in reducing the frequency of seizures
in animal models of epilepsy. It was seen that both children and adults
with LS, treated with a purified pharmaceutical form of CBD at doses of
10mg/kg or 20mg/kg daily showed a considerable reduction in the
frequency of drop seizures than placebo [49]. Moreover, CBD (20mg/
kg) appeared to be a safe drug because the most common adverse
events were somnolence, decreased appetite and diarrhea [49]. How-
ever, in some patients treated with CBD (20mg/kg) and valproate, an
increase in hepatic aminotransferase concentrations was seen. This ef-
fect could depend on a pharmacodynamic interaction between CBD and
valproate [49]. In 2018, CBD Epidiolex received FDA approval for the
treatment of epileptic seizures associated with LS and DS in 2-year-old
patients.

3.2. Autism spectrum disorders

Autism spectrum disorders (ASD) are characterized by social be-
havioral deficits and neuropsychiatric symptoms. Even today the etio-
pathogenesis of ASD is not known, but recently the idea that alterations
in neurodevelopment during pregnancy could be the cause of ASD is
prevailing [50]. Indeed, neuroanatomical and cytoarchitectonic ab-
normalities were observed in many brain regions, such as the cortex,
cerebellum, hippocampus, amygdala [51]. Moreover, several studies
have suggested that social deficits come from inadequacy in reward
system functioning [52]. Considering the role of the ECS in controlling
emotional responses, behavioral reactivity to context and social inter-
action, it was hypothesized that it is involved in the autistic phenotype
[53]. In addition, a recent study displayed lower plasma levels of AEA
in ASD patients as compared to healthy controls, suggesting its in-
volvement in the pathophysiology of ASD [54]. Other studies have
shown an interaction between ECS and oxytocin mediated social re-
ward. It seems that oxytocin induces AEA mobilization in the mouse
nucleus accumbens contributing to social impairment in ASD [55]. It
should be noted that some studies suggest that intra-nasal administra-
tion of drugs that acts on the oxytocin pathway may have therapeutic
effects in ASD [52]. Thus, a possible mechanism of action of CBD is
based on the activation of TRPV2 which may play a role in the reg-
ulation of oxytocin and vasopressin secretion [56]. In addition, pre-
liminary data showed that CB2R is highly expressed in peripheral blood
mononuclear cells of young children with ASD compared with controls
[57].

3.3. Psychotic disorders

Psychosis literally means degeneration of the soul and it is used to
describe the illness generated from alterations in the thought. These
disorders involve several neurotransmitter systems and brain regions
making treatment difficult and accompanied by heavy side effects for
patients. Recently, the ECS seems to have an important role in theseTa
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disorders, contrary to what was previously believed. Indeed, psychotic-
like symptoms seem to be produced by D9-THC and its derivatives [58].

Initial studies have shown that CBD, other than not showing psy-
chotic symptoms, prevents some of the effects produced by D9-THC
[59], supporting the idea that the CBD may have antipsychotic activity
or exhibits a profile similar to atypical antipsychotic drugs. Other stu-
dies displayed that CBD reduced stereotypies induced by apomorphine,
hyperlocomotion induced by amphetamine and ketamine and the per-
ception of illusory image induced by nabilone [59]. On the contrary, in
patients treated with ketamine, that induces psychotic symptoms, CBD
did not reduce dissociative effects induced by ketamine, but rather
augmented the effects of ketamine [60]. These contradictory data
propose to investigate mainly the role of CBD in psychotic disorders.
Biological mechanisms of the CBD antipsychotic effects may depend on
an increase in neuronal activation (measured by cFos-protein expres-
sion) in the prefrontal cortex and also in the nucleus accumbens, effect
shared by typical and atypical antipsychotic drugs [61]. In addition,
cerebroventricular administration of CBD enhanced extracellular levels
of dopamine in the nucleus accumbens; how it is related to the anti-
psychotic properties of CBD is unclear. Probably the antipsychotic-like
doses of CBD are higher than those needed to induce anxiolytic effects
[61]. Recently, some authors showed that schizophrenic patients
treated with CBD present higher AEA serum levels compared with those
that received antipsychotics, and they showed an improvement of
psychotic symptoms [62,63]. Probably, CBD inhibiting FAAH activity
(10 μM) increases the level of AEA, which actives CB1R. Another me-
chanism associated with CBD is a negative allosteric modulation of the
CB1R, which could explain the protective action of CBD when it was
administered with D9-THC [64].

3.4. Anxiety disorders

Anxiety is a physiological aspect of our organism that warns us
when we are facing a danger. Anxiety becomes pathological when it
conditions life expectancy resulting in a somatic as well as psycholo-
gical symptomatology. There are many types of therapies and treat-
ments for anxiety disorders, but not all of them are effective or devoid
of side effects. Therefore, new drugs are being studied to improve these
consequences.

CBD seems to have an anxiolytic effect, but the results are contra-
dictory. For instance, CBD 100mg/kg in rats has no effect in the Geller
Seifer conflict model of anxiety as reported by a comprehensive review
of Blessing and colleagues [65]. In addition, CBD 10mg/kg attenuated
conditioned emotional responses [65]. Subsequently, these apparent
contradictory results have been explained. CBD promoted anxiolytic-
like effects with an inverted U-shaped dose-response curve: higher
doses (more than 20mg/kg) were ineffective [66]. Further studies
confirmed the anxiolytic properties of CBD also in other animal models
and in humans. Clinical studies have shown that a single dose of CBD
(300/600mg/kg) reduced anxiety in healthy volunteers during neu-
roimaging studies or in public speaking and in never treated social
phobic patients [65]. Probably, these effects could depend on changes
in brains regions involved in emotional processing. These clinical
findings were complemented by studies in rodents, using direct ad-
ministration into brain sites related to anxiety or panic-like responses.
Microinjection of CBD (15, 30 and 60 nmol) into the dorsal portions of
the periaqueductal grey (DPAG) or into bed nucleus of the stria termi-
nalis (BNST) promoted anxiolytic-like effects in several behavioral tests
[67,68]. This effect supports results showing that the effects of CBD in a
contextual fear-conditioning model was associated with decreased
neuronal activation in this area [69]. This same treatment attenuated
the activation of the pre and infra-limbic cortical regions. However, in
these two areas, CBD produced opposite effects, decreasing and facil-
itating, respectively, conditioned emotional responses. Other possible
brain sites of CBD anxiolytic-like effects have not yet been investigated
(e.g., the hippocampus).

Molecular mechanisms underlying of anxiolytic effects of CBD could
be related to different molecular concentrations of the drug [92].
Moreover, CBD is proposed to activate or modify the function of many
receptors in the central nervous system. Therefore, defining the role of
CBD in the molecular mechanisms of anxiety is still difficult.

3.5. Post-traumatic stress disorder

Until some time ago, post-traumatic stress disorder (PTSD) was in-
cluded in the classification of anxiety disorders. According to the DSM-
5, PTSD is relocated from the anxiety disorders category to a new di-
agnostic category named “Trauma and Stressor-related Disorders”. The
necessary conditions in order to develop PTSD are: direct or indirect
exposure to a strong trauma, frequent involuntary and intrusive mem-
ories of the experienced trauma, persistent avoidance and denial of
everything related to the trauma, general negative emotional state with
constant feelings of fear, horror, anger, guilt or shame towards the
world, irritable behavior, hypervigilance, exaggerated startle response,
concentration problems, sleep difficulties [70]. Unfortunately there are
no effective pharmacological or psychological treatments for PTSD
[71]. Approved treatments for PTSD are anxiolytics and anti-
depressants, but they have considerable side effects and are inefficient
probably because they do not specifically target the memory process
[71]. For these reasons, today, the research is aiming towards new
therapies, such as phytoextracts from C. sativa. In a proposed model of
panic attacks and PTSD, CBD decreased defensive behaviors evoked by
predator exposure [72]. In fact, CBD blocked trauma-related responses
when given before the acquisition phase or before the phase of adverse
memory recovery [73]. Other studies have shown that CBD interferes in
learning and memory of aversive events, processes that have been as-
sociated with PTSD pathophysiology [74]. Contrasting with this latest
result, Elbasth and colleagues have reported that repeated administra-
tion of CBD (14 days) increases state of fear rather than reducing it
[75]. The reason for these conflicting results is unknown but may in-
volve a different drug administration regime used (chronic versus acute)
and distinct conditioning protocols compared with other studies that
investigated the effects of CBD in this model. Finally, CBD can control
sleep disturbances by increasing duration and depth, and decreasing
anxiety as observed in some in vivo models [65].

Finally, CBD can facilitate the extinction of aversive memories also
in humans PTSD affected, but only when it is administered immediately
after, and not before, a traumatic event.

3.6. Depression

Depression is a mood disorder characterized by a permanent and
constant psycho-physical illness. C. sativa exerts significant effects upon
state of mind, such as euphoria and mood elevation [76]. Considering
these observations, a supposed role for ECS in mood disorders has been
proposed. However, the CBD effects on depressive symptomatology
have been scarcely investigated. Probably CBD has antidepressant-like
proprieties, because it actives 5HT1a receptor [7]. Indeed, some studies
showed that an acute administration of CBD at high doses has anti-
depressant effects [76]. However, depression requires chronic treat-
ment, so, recently CBD has been tested against the consequences of
chronic unpredictable stress, which includes anhedonia and anxiety-
like behavior [77]. Chronic treatment with CBD was able to prevent
these behavioral changes, an effect that depends on hippocampal neu-
rogenesis [78]. These observations proved that CBD should be con-
sidered as a potential drug for the treatment of mood disorders.

3.7. Alzheimer's disease

Alzheimer's disease (AD) is a progressive, chronic, and neurode-
generative disease caused by a loss of cholinergic neurons leading to a
memory deficit (both short and long term) followed by other
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psychiatric disorders. It is characterized by two well-known patholo-
gical hallmarks: senile plaques, due to the extracellular accumulation of
the amyloid beta (Aβ) protein, and neurofibrillary tangles (NFTs),
caused by the aggregation of hyperphosphorylated tau [79]. CBD in
vitro inhibited the hyperphosphorylation of tau and reduced Aβ pro-
duction by promoting APP ubiquitination [80]. In addition, in vivo CBD
treatment has been shown to reverse the cognitive deficits in a double
transgenic AD mouse model (APP/PS1) [81]. The anti-inflammatory
and neuroprotective effects of CBD could be connected to its ability to
reduce the level of iNOS, GFAP, calcium binding protein B, and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB). These
actions may be mediated, at least partially, through the PPAR-γ re-
ceptor [82]. Other studies have demonstrated, instead, that it is the
combination of CBD and D9-THC that prevents the learning deficit [81].

3.8. Parkinson's disease

Parkinson's disease (PD) is a neurodegenerative disorder, with af-
fects 1% of the population, usually, over 60 years old [83]. Character-
istic symptoms of this disease are motor deficits (hypokinesia, tremors,
muscle rigidity) accompanied in the final phase by psychiatric illness
(sleep disturbances, cognitive deficits, anxiety, depression, psychotic
symptoms) [83]. The first studies with CBD on PD have demonstrated
that it reduces psychotic symptoms and reduces the frequency of events
related to REM sleep behavior disorder. Unfortunately, CBD did not act
on motor symptoms, but could prevent and/or reverse catalepsy be-
havior in rodents, probably because it acts on the 5-HT1A receptor
[84]. In in vivo studies CBD has shown neuroprotective effect: it in-
creases mRNA level of antioxidant enzyme Cu, Zn-superoxide dismutase
in substantia nigra and prevents depletion of dopamine and reduction in
tyrosine hydroxylase activity in caudate-putamen [85]. Furthermore,
CBD could induce neuroprotection through the normalization of
homeostasis of glutamate, the reduction of microglia activation and
through neuritogenesis [86]. This final biological mechanism is based
on synaptogenesis and axonal growth that are typically induced by
NGF. CBD can induce neuritogenesis by activating tropomyosin re-
ceptor kinase A (trkA) also without NGF [86]. CBD significantly in-
creases the synaptophysin expression, Growth Associated Protein 43
(GAP-43) and synapsin-1 expression, thereby inducing neurite forma-
tion and elongation in addition to synaptic vesicle formation [86].

4. Conclusion

C. sativa is rich in terpeno-phenolic molecules that are produced as a
plant defense against environmental stress; they have been used by
humans for therapeutic and voluptuary purposes. CBD is the main
phytocannabinoid that does not induce psychotropic action and it has
shown protective and therapeutic effects in multiple preclinical and
clinical models. Some receptor binding studies have investigated the
pathways involved in its pharmacological action but with conflicting
results. Indeed, it seems that CBD acts in a non-specific way on multiple
receptor systems generating a concert of responses to both central and
peripheral therapeutic actions. The emergence of CBD as a therapeutic
strategy for some forms of epilepsy has been an important pharma-
ceutical achievement in neurodevelopmental pathologies. Hereupon
today, some clinical trials are investigating the action of CBD in ASD.
However, the pathways involved in the biological responses of CBD
remain poorly understood. In addition, the ability of CBD to interact
with hepatic cytochromes has still to be well defined. Finally, the roles
and mechanisms of CBD in many neuropsychiatric disorders have not
yet been well explored. Therefore, more in-depth studies on biological
responses to CBD administration will be needed to better understand
the genesis and progression of neuropsychiatric diseases.
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